Telecommunications Science ›› 2023, Vol. 39 ›› Issue (4): 17-30.doi: 10.11959/j.issn.1000-0801.2023090
• Research and Development • Previous Articles Next Articles
Zhilong ZHANG, Tianqi ZHANG, Xuefei LI, Danpu LIU
Revised:
2023-04-12
Online:
2023-04-20
Published:
2023-04-01
Supported by:
CLC Number:
Zhilong ZHANG, Tianqi ZHANG, Xuefei LI, Danpu LIU. Research on collaborative resource optimization technology based on convergence of computing, control and communication in Internet of vehicles[J]. Telecommunications Science, 2023, 39(4): 17-30.
"
研究方向 | 现有方案不足 | 所提方案和思路 |
行驶控制与无线资源协同优化 | 针对具体控制场景,未考虑多种控制类业务统一化建模及通信控制耦合关系分析 | 基于控制类业务通用模型,分析通信不理想因素对控制性能的影响,并结合稳定控制和预测控制模型优化多维资源分配 |
高动态场景下的跨域资源协同优化 | 未区分与联合考虑移动性可控制和移动性可感知的多维资源协同优化 | 聚焦高动态的网络特征,感知普通车辆的移动性,调控自动驾驶车辆轨迹和间距,并展望了高动态环境下的多播分组和资源优化技术 |
面向差异化业务需求的资源协同优化 | 较少考虑差异化业务并存时的资源竞争关系及网络切片中的多维资源配置问题 | 聚焦差异化业务并存的需求特征,基于资源切片、差异化接入、动态优先级划分等技术,展望了资源和需求动态匹配的用户接入以及切片间/切片内的分级调度技术 |
[1] | 陈山枝, 葛雨明, 时岩 . 蜂窝车联网(C-V2X)技术发展、应用及展望[J]. 电信科学, 2022,38(1): 1-12. |
CHEN S Z , GE Y M , SHI Y . Technology development,application and prospect of cellular vehicle-to-everything (C-V2X)[J]. Telecommunications Science, 2022,38(1): 1-12. | |
[2] | 国家发展和改革委员会, 中共中央网络安全和信息化委员会办公室, 科学技术部,等. 智能汽车创新发展战略[R]. 2020. |
National Development and Reform Commission, Office of the Central Cyberspace Affairs Commission, Ministry of Science and Technology,et al. Intelligent vehicle innovation and development strategy[R]. 2020. | |
[3] | 3GPP. Service requirements for enhanced V2X scenarios (v16.0.0):3GPP TS.22.186[S]. 2018. |
[4] | 工业和信息化部, 国家广播电视总局, 中央广播电视总台. 超高清视频产业发展行动计划(2019-2022年)[R]. 2019. |
Ministry of Industry and Information Technology, National Radio and Television Administration, China Media Group. Action plan for the development of ultra HD video industry (2019-2022)[R]. 2019. | |
[5] | SUKHMANI S , SADEGHI M , EROL-KANTARCI M ,et al. Edge caching and computing in 5G for mobile AR/VR and tactile Internet[J]. IEEE Multi Media, 2019,26(1): 21-30. |
[6] | FU F , KANG Y P , ZHANG Z C ,et al. Soft actor–critic DRL for live trans coding and streaming in vehicular fog-computingenabled IoV[J]. IEEE Internet of Things Journal, 2021,8(3): 1308-1321. |
[7] | 北京市经济和信息化局办公室. 北京 5G 产业发展白皮书(2019)[R]. 2019. |
Beijing Municipal Bureau of Economy and Information Technology. White paper on Beijing 5G industry development (2019)[R]. 2019. | |
[8] | 宋贤鑫, 张一帆, 秦晓琦 ,等. 车联网中基于边缘计算的感知决策技术[C]// 第十四届中国智能交通年会论文集. 北京:电子工业出版社, 2019: 81-87. |
SONG X X , ZHANG Y F , QIN X Q ,et al. Perceptual decision-making technology based on edge computing in the Internet of vehicles[C]// Proceedings of the 14th China Intelligent Transport Annual Conference. Beijing:Publishing House of Electronics Industry, 2019: 81-87. | |
[9] | 陈山枝 . 蜂窝车联网(C-V2X)及其赋能智能网联汽车发展的辩思与建议[J]. 电信科学, 2022,38(7): 1-17. |
CHEN S Z . Critical thinking and suggestions on C-V2X with the developments of intelligent connected vehicles[J]. Telecommunications Science, 2022,38(7): 1-17. | |
[10] | 张志龙 . 无线视频传输优化技术[M]. 北京: 北京邮电大学出版社, 2020. |
ZHANG Z L . Wireless video transmission optimization technology[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2020. | |
[11] | LI Y F , HE C P . Connected autonomous vehicle platoon control considering vehicle dynamic information[C]// Proceedings of 2018 37th Chinese Control Conference. Piscataway:IEEE Press, 2018: 7834-7839. |
[12] | PENG B , YU D X , ZHOU H X ,et al. A platoon control strategy for autonomous vehicles based on sliding-mode control theory[J]. IEEE Access, 2020(8): 81776-81788. |
[13] | PRAYITNO A , NILKHAMHANG I . V2V network topologies for vehicle platoons with cooperative state variable feedback control[C]// Proceedings of 2021 Second International Symposium on Instrumentation,Control,Artificial Intelligence,and Robotics (ICA-SYMP). Piscataway:IEEE Press, 2021: 1-4. |
[14] | YANG M , AI B , HE R S ,et al. Machine-learning-based scenario identification using channel characteristics in intelligent vehicular communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,22(7): 3961-3974. |
[15] | KESHAVAMURTHY P , PATEROMICHELAKIS E , DAHLHAUS D ,et al. Resource scheduling for V2V communications in co-operative automated driving[C]// Proceedings of 2020 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2020: 1-6. |
[16] | GON?ALVES T R , VARMA V S , ELAYOUBI S E . Vehicle platooning schemes considering V2V communications:a joint communication/control approach[C]// Proceedings of 2020 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2020: 1-6. |
[17] | LI Y F , CHEN W B , PEETA S ,et al. Platoon control of connected multi-vehicle systems under V2X communications:design and experiments[J]. IEEE Transactions on Intelligent Transportation Systems, 2020,21(5): 1891-1902. |
[18] | ZENG T C , SEMIARI O , SAAD W ,et al. Joint communication and control system design for connected and autonomous vehicle navigation[C]// Proceedings of 2019 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2019. |
[19] | ZENG T C , SEMIARI O , SAAD W ,et al. Integrated communications and control Co-design for wireless vehicular platoon systems[C]// Proceedings of 2018 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2018: 1-6. |
[20] | ZENG T C , SEMIARI O , SAAD W ,et al. Joint communication and control for wireless autonomous vehicular platoon systems[J]. IEEE Transactions on Communications, 2019,67(11): 7907-7922. |
[21] | HONG C H , SHAN H G , SONG M Y ,et al. A joint design of platoon communication and control based on LTE-V2V[J]. IEEE Transactions on Vehicular Technology, 2020,69(12): 15893-15907. |
[22] | YUAN Q , LI J L , ZHOU H B ,et al. A joint service migration and mobility optimization approach for vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2020,69(8): 9041-9052. |
[23] | ZHU C , TAO J , PASTOR G ,et al. Folo:latency and quality optimized task allocation in vehicular fog computing[J]. IEEE Internet of Things Journal, 2019,6(3): 4150-4161. |
[24] | ZHU D W , BILAL M , XU X L . Edge task migration with 6G-enabled network in box for cybertwin-based Internet of vehicles[J]. IEEE Transactions on Industrial Informatics, 2022,18(7): 4893-4901. |
[25] | LIU X , LAI B J , LIN B ,et al. Joint communication and trajectory optimization for multi-UAV enabled mobile Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(9): 15354-15366. |
[26] | LUO Q Y , LI C L , LUAN T H ,et al. EdgeVCD:intelligent algorithm-inspired content distribution in vehicular edge computing network[J]. IEEE Internet of Things Journal, 2020,7(6): 5562-5579. |
[27] | ZHANG Y , LI C L , LUAN T H ,et al. A mobility-aware vehicular caching scheme in content centric networks:model and optimization[J]. IEEE Transactions on Vehicular Technology, 2019,68(4): 3100-3112. |
[28] | ZHANG Z L , DAI J M , ZENG M Y ,et al. Scalable video caching for information centric wireless networks[J]. IEEE Access, 2020(8): 77272-77284. |
[29] | LI X F , WANG J W , ZHANG Z L ,et al. Mobility-aware proactive video segment caching based on deep reinforcement learning[C]// Proceedings of 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC). Piscataway:IEEE Press, 2022: 230-234. |
[30] | NDIKUMANA A , TRAN N H , KIM D H ,et al. Deep learning based caching for self-driving cars in multi-access edge computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,22(5): 2862-2877. |
[31] | NING Z L , ZHANG K Y , WANG X J ,et al. Intelligent edge computing in Internet of vehicles:a joint computation offloading and caching solution[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,22(4): 2212-2225. |
[32] | LUO Q Y , LI C L , LUAN T H ,et al. Collaborative data scheduling for vehicular edge computing via deep reinforcement learning[J]. IEEE Internet of Things Journal, 2020,7(10): 9637-9650. |
[33] | QIN Z X , LENG S P , ZHOU J H ,et al. Collaborative edge computing and caching in vehicular networks[C]// Proceedings of 2020 IEEE Wireless Communications and Networking Conference (WCNC). New York:ACM Press, 2020: 1-6. |
[34] | ZHAO J H , SUN X K , LI Q P ,et al. Edge caching and computation management for real-time Internet of vehicles:an online and distributed approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,22(4): 2183-2197. |
[35] | ZHANG Z L , ZENG M Y , CHEN M Z ,et al. Joint user grouping,version selection,and bandwidth allocation for live video multicasting[J]. IEEE Transactions on Communications, 2022,70(1): 350-365. |
[36] | LIU G , WANG Z Q , HU J W ,et al. Cooperative NOMA broadcasting/multicasting for low-latency and high-reliability 5G cellular V2X communications[J]. IEEE Internet of Things Journal, 2019,6(5): 7828-7838. |
[37] | WANG W J , LUO T , KANG H X . A local information sensing-based broadcast scheme for disseminating emergency safety messages in IoV[J]. Mobile Information Systems, 2019(2): 1-11. |
[38] | SUN J N , DONG P , DU X J ,et al. Cluster-based cooperative multicast for multimedia data dissemination in vehicular networks[C]// Proceedings of 2020 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2020: 1-6. |
[39] | ZHANG Y L , XU Y H , WU Q H ,et al. Context awareness group buying in D2D networks:a coalition formation game-theoretic approach[J]. IEEE Transactions on Vehicular Technology, 2018,67(12): 12259-12272. |
[40] | 袁子叶, 葛万成 . 车联网异构网络资源管理优化研究[J]. 信息通信, 2019,32(5): 93-95. |
YUAN Z Y , GE W C . Research on resource management optimization of heterogeneous network in vehicle networking[J]. Information & Communications, 2019,32(5): 93-95. | |
[41] | 孙向月 . 5G 车联网场景下基于业务优先级的资源调度算法的研究[D]. 重庆:重庆邮电大学, 2019. |
SUN X Y . Research on resource scheduling algorithm based on service priority in 5G vehicle networking scenarios[D]. Chongqing:Chongqing University of Posts and Telecommunications, 2019. | |
[42] | 张志龙, 刘丹谱, 尹长川 ,等. 一种基于比特重要性的功率分配方法及装置:ZL201410710167.7[P]. 2017. |
ZHANG Z L , LIU D P , YIN C C ,et al. A power allocation method and device based on bit importance:ZL201410710167.7[P]. 2017. | |
[43] | ZHANG Z L , LIU D P , WANG X . Joint carrier matching and power allocation for wireless video with general distortion measure[J]. IEEE Transactions on Mobile Computing, 2018,17(3): 577-589. |
[44] | YANG H L , XIE X Z , KADOCH M . Intelligent resource management based on reinforcement learning for ultra-reliable and low-latency IoV communication networks[J]. IEEE Transactions on Vehicular Technology, 2019,68(5): 4157-4169. |
[45] | ZHAO D , QIN H , SONG B ,et al. A reinforcement learning method for joint mode selection and power adaptation in the V2V communication network in 5G[J]. IEEE Transactions on Cognitive Communications and Networking, 2020,6(2): 452-463. |
[46] | 张蕾, 朱雪田, 李金艳 . 5G网络切片在车路协同系统中的应用研究[J]. 电子技术应用, 2020,46(1): 12-16. |
ZHANG L , ZHU X T , LI J Y . Research on the application of 5G network slice in intelligent vehicle infrastructure cooperative systems[J]. Application of Electronic Technique, 2020,46(1): 12-16. | |
[47] | ?EREMET I , ?AU?EVI? S . Benefits of using 5G network slicing to implement vehicle-to-everything (V2X) technology[C]// Proceedings of 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH). Piscataway:IEEE Press, 2019: 1-6. |
[48] | CHEN Q M , JIANG H , YU G D . Service oriented resource management in spatial reuse-based C-V2X networks[J]. IEEE Wireless Communications Letters, 2020,9(1): 91-94. |
[1] | Kun WANG, Zhenjiang DONG, Fan YANG, Guyue ZHOU. Key technologies and applications of C-V2X based vehicle-infrastructure cooperative autonomous driving [J]. Telecommunications Science, 2023, 39(3): 45-60. |
[2] | Bo GU, Ting AO. Application of MEC-based positioning technology in the Internet of vehicles [J]. Telecommunications Science, 2022, 38(Z1): 250-258. |
[3] | Jiao WANG, Gongan QIU, Shibing ZHANG. Adaptive channel status based access class barring scheme for traffic emergency communication [J]. Telecommunications Science, 2022, 38(1): 95-101. |
[4] | Kaifeng HAN,Tiezhi LIU. Backscatter communication assisted vehicular positioning technology with ultra-high accuracy [J]. Telecommunications Science, 2020, 36(7): 107-117. |
[5] | Ning HUI,Jie WU,Yiqing ZHOU,Ling LIU,Zhengang PAN. Future vehicular fog computing networks [J]. Telecommunications Science, 2020, 36(6): 14-27. |
[6] | Lin LIN,Lu LI,Yuming GE. Analysis of the communication standardization and industry development of internet of vehicles [J]. Telecommunications Science, 2020, 36(4): 15-26. |
[7] | Wei LIU,Yipeng ZHANG,Xuying GUAN,Shangchao KUANG,Feng LI. C-V2X city-scale demonstration application [J]. Telecommunications Science, 2020, 36(4): 27-35. |
[8] | Yufeng LI,Xiaoyuan LU,Chenhong CAO,Jiangtao LI,Hongyi ZHU,Nan MENG. A survey of cybersecurity for intelligent connected-automated vehicle [J]. Telecommunications Science, 2020, 36(4): 36-45. |
[9] | Bo JIN,Yanming HU. Overview and prospect for the development of C-V2X internet of vehicles industry [J]. Telecommunications Science, 2020, 36(3): 93-99. |
[10] | FANG Jian,FENG Daquan,DUAN Haijun,ZHENG Canjian,QIAN Gongbin. An overview of V2X communications [J]. Telecommunications Science, 2019, 35(6): 102-112. |
[11] | Bing ZHAO,Zhimin LIU,Yiming YUAN,Tao HAN. SoftCOM AI,autonomous driving telecom network solution [J]. Telecommunications Science, 2019, 35(4): 103-113. |
[12] | Libo TANG,Chen KANG. Integration development trend of the internet of vehicles industry [J]. Telecommunications Science, 2019, 35(11): 96-100. |
[13] | Yongfang QIU,Gong'an QIU,Yongzheng ZHOU. Variable distance based D2D connection selection scheme in internet of vehicles [J]. Telecommunications Science, 2017, 33(5): 39-45. |
[14] | HUANG Haikun. Technology and business of remote provisioning for embedded SIM [J]. Telecommunications Science, 2016, 32(9): 2016245-. |
[15] | Qiong Yang,Jing Hu,Weiwei Xia. Mobility Management and Resource Management of Internet of Vehicles in Converged Heterogeneous Network Scenario [J]. Telecommunications Science, 2015, 31(9): 60-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|