通信学报 ›› 2020, Vol. 41 ›› Issue (5): 150-158.doi: 10.11959/j.issn.1000-436x.2020108
郑凤1,2,陈艺戬3,4,冀思伟1,2,段高明1,2,郁光辉3,4
修回日期:
2020-04-24
出版日期:
2020-05-25
发布日期:
2020-05-30
作者简介:
郑凤(1977- ),女,山东青岛人,博士,北京邮电大学副教授,主要研究方向为无线通信和未来网络|陈艺戬(1984- ),男,湖南常德人,中兴通讯股份有限公司高级工程师,主要研究方向为多天线和高频通信|冀思伟(1996- ),女,河北张家口人,北京邮电大学硕士生,主要研究方向为无线通信|段高明(1996- ),男,湖北十堰人,北京邮电大学硕士生,主要研究方向为无线通信|郁光辉(1976- ),男,江苏南通人,博士,中兴通讯股份有限公司高级工程师,主要研究方向为多天线、高频通信、网络架构、人工智能等
基金资助:
Feng ZHENG1,2,Yijian CHEN3,4,Siwei JI1,2,Gaoming DUAN1,2,Guanghui YU3,4
Revised:
2020-04-24
Online:
2020-05-25
Published:
2020-05-30
Supported by:
摘要:
鉴于轨道角动量(OAM)不同模式之间良好的正交性,该技术在无线通信中的应用是近年来新兴的、具有较大通信容量提升潜力的热点技术方向之一。基于 OAM的无线通信技术能有效提升频谱利用率,但同时面临着诸多挑战。首先介绍了OAM技术在无线通信领域的研究现状与进展,结合OAM的基本原理,对比分析了OAM与MIMO技术之间的关系,并对“OAM是否提供一个新的维度?”的争议给出结论。然后总结了OAM的产生与接收方法,并概述其相应的关键技术与应用领域。最后深入分析了该技术在实际应用中的挑战,进而提出其未来的发展趋势和后续的研究方向。期望对该领域的研究起到参考和帮助作用。
中图分类号:
郑凤,陈艺戬,冀思伟,段高明,郁光辉. 轨道角动量通信技术的研究[J]. 通信学报, 2020, 41(5): 150-158.
Feng ZHENG,Yijian CHEN,Siwei JI,Gaoming DUAN,Guanghui YU. Research on orbital angular momentum communication technology[J]. Journal on Communications, 2020, 41(5): 150-158.
表3
不同s-OAM产生方式的原理、优缺点及应用领域"
产生方式 | 原理 | 优点 | 缺点 | 应用领域 |
螺旋相位板 | 利用平面波经过厚度变化或者介电常数变化的圆形介质板引起相位时延,包括 2 种方案:厚度螺旋增加的介质板和多孔型相位板,实际中也采用多阶梯相位板近似 | 原理简单、成本低 | 用于高频到光波波段,只能产生单一模数 OAM 波,模数较高时轴心部分加工难度大,波束发散角度大,透射损耗大,复用技术方案复杂 | 光通信、无线通信 |
阶梯反射法 | 各个阶梯之间有相位阶跃,当波束入射时,由于这种特殊的阶梯状结构导致反射波不再是平面,成为波前扭曲的涡旋电磁波 | 结构简单 | 只能产生单一模数OAM波,不易小型化 | |
旋转抛物面天线 | 将抛物面反射器改造为具有螺旋抬升的结构 | 保留了抛物面天线的优点,不需要相位控制,波束方向性强 | 只能产生单一模数的OAM波,体积大 | 无线通信 |
阵列天线 | 利用等距圆阵,相邻阵元采用等幅、相位差为 | 理论成熟,可产生多个模数的OAM波 | 馈电结构复杂,高阶模数OAM需要大量天线单元,波束发散角度大,阵元相位误差易导致波前抖动和主瓣宽度增大 | 无线通信 |
反射/透射阵列 | 利用馈源向周期性单元组成的反射/透射面照射,形成OAM波 | 无复杂的馈电网络 | 反射/透射面上单元设计复杂 | 无线通信 |
波导谐振天线 | 方案较多,例如行波谐振天线、介质谐振天线等 | 尺寸小,易集成 | 传输距离较近,离实用尚有差距 | 无线通信 |
电磁超表面天线 | 通过人工设计的亚波长周期性微结构单元改变入射平面波的电磁特性,从而获得反射或透射的OAM波 | 尺寸小,易集成 | 工艺较复杂 | 光通信、无线通信 |
[39] | YANG K P . Research on generation and modulation of optical OAM based on sub-wavelength structure[D]. Chengdu:Graduate School of Chinese Academy of Sciences (Institute of Optoelectronic Technology), 2016. |
[40] | YAN Y , XIE G D , LAVERY M P ,et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014,5(1): 4876-4876. |
[41] | MOHAMMADI S M , DALDORFF L K , FOROZESH K ,et al. Orbital angular momentum in radio:measurement methods[J]. Radio Science, 2010,45(4): 1-14. |
[42] | DIALLO C D , NGUYEN D K , CHABORY A ,et al. Estimation of the orbital angular momentum order using a vector antenna in the presence of noise[C]// The 8th European Conference on Antennas and Propagation. Berlin:Springer, 2014: 3248-3252. |
[43] | NGUYEN D K , SOKOLOFF J , PASCAL O ,et al. Local estimation of orbital and spin angular momentum mode numbers[J]. IEEE Antennas and Wireless Propagation Letters, 2017,16: 50-53. |
[44] | ZHANG Y , ZHANG H , PANG L H ,et al. On reception sampling region of OAM radio beams using concentric circular arrays[C]// 2018 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2018: 1-5. |
[1] | MCMORRAN B J , AGRAWAL A , ANDERSON I M ,et al. Electron vortex beams with high quanta of orbital angular momentum[J]. Science, 2011,331(6014): 192-195. |
[2] | 刘曼 . 探测涡旋光束轨道角动量的新方法[J]. 光学学报, 2013,33(3): 278-284. |
LIU M . New method for detecting angular momentum of vortex beam[J]. Acta Photonica Sinica, 2013,33(3): 278-284. | |
[3] | WANG J , YANG J Y , FAZAL I M ,et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012,6(7): 488-496. |
[4] | YAN Y , XIE G , LAVERY M P ,et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014,5(1): 4876-4876. |
[5] | MOHAMMADI S M , DALDORFF L K , FOROZESH K ,et al. Orbital angular momentum in radio:measurement methods[J]. Radio Science, 2010,45(4): 1-14. |
[6] | TAMBURINI F , MARI E , SPONSELLI A ,et al. Encoding many channels in the same frequency through radio vorticity:first experimental test[J]. New Journal of Physics, 2011,14(11): 78001-78004. |
[7] | TENNANT A , ALLEN B . Generation of OAM radio waves using circular time-switched array antenna[J]. Electronics Letters, 2012,48(21): 1365-1366. |
[8] | MAHMOULI F E , WALKER S D . 4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel[J]. IEEE Wireless Communications Letters, 2013,2(2): 223-226. |
[9] | ZHENG S , HUI X , JIN X ,et al. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2015,63(4): 1530-1536. |
[10] | JIN X , CHEN Y , CHI H ,et al. Half-mode substrate integrated waveguide antenna for generating multiple orbital angular momentum modes[J]. Electronics Letters, 2016,52(9): 684-686. |
[11] | PAN Y , ZHENG S , ZHENG J ,et al. Generation of orbital angular momentum radio waves based on dielectric resonator antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017,16: 385-388. |
[12] | ZHANG W T , ZHENG S L , HUI X N ,et al. Four-OAM-mode antenna with traveling-wave ring-slot structure[J]. IEEE Antennas and Wireless Propagation Letters, 2017,16: 194-197. |
[13] | ZHENG S L , CHEN Y L , ZHANG Z F ,et al. Realization of beam steering based on plane spiral orbital angular momentum wave[J]. IEEE Transactions on Antennas and Propagation, 2018,66(3): 1352-1358. |
[14] | ZHENG S , HUI X , ZHU J ,et al. Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture[J]. Optics Express, 2015,23(9): 12251-12257. |
[15] | QIN F , GAO S , CHENG W C . A high-gain transmit array for generating dual-mode OAM beams[J]. IEEE Access, 2018,6: 61006-61013. |
[16] | CHENG W C , ZHANG H L , LIANG L P ,et al. Orbital-angular-momentum embedded massive MIMO:achieving multiplicative spectrum-efficiency for mmWave communications[J]. IEEE Access, 2018,6: 2732-2745. |
[17] | YANG Y W , CHENG W C , ZHANG W ,et al. Mode modulation for wireless communications with a twist[J]. IEEE Transactions on Vehicular Technology, 2018,67(11): 10704-10714. |
[18] | WANG L , GE X H , ZI R ,et al. Capacity analysis of orbital angular momentum wireless channels[J]. IEEE Access, 2017,5: 23069-23077. |
[19] | GE X H , ZI R , XIONG X S ,et al. Millimeter wave communications with OAM-SM scheme for future mobile networks[J]. IEEE Journal on Selected Areas in Communications, 2017,35(9): 2163-2177. |
[20] | YAO Y , LIANG X L , ZHU W R ,et al. Phase mode analysis of radio beams carrying orbital angular momentum[J]. IEEE Antennas and Wireless Propagation Letters, 2017,16: 1127-1130. |
[21] | BAI X D , LIANG X L , SUN Y T ,et al. Experimental array for generating dual circularly-polarized dual-mode OAM radio beams[J]. Scientific Reports, 2017,7(1):40099. |
[22] | YAO Y , LIANG X L , ZHU W R ,et al. Experiments of orbital angular momentum phase properties for long-distance transmission[J]. IEEE Access, 2019,7:62689. |
[24] | ZHANG C , MA L . Millimetre wave with rotational orbital angular momentum[J]. Scientific Reports, 2016,6(1):31921. |
[25] | ZHANG C , MA L . Detecting the orbital angular momentum of the electro-magnetic waves with orbital angular momentum[J]. Scientific Reports, 2017,7(1):4585. |
[26] | ZHANG C , MA L . Trellis-coded OAM-QAM union modulation with single-point receiver[J]. IEEE Communications Letters, 2017,21(4): 690-693. |
[27] | ZHANG C , JIANG J , ZHAO Y . Euclidean space with orbital angular momentum[C]// 2019 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway:IEEE Press, 2019: 1-6. |
[28] | DOOHWAN L , HIROFUMI S . An experimental demonstration of 28 GHz band wireless OAM-MIMO (orbital angular momentum multi-input and multi-output) multiplexing[C]// 2018 IEEE 87th Vehicular Technology Conference (VTC Spring). Piscataway:IEEE Press, 2018: 1-5. |
[29] | DOOHWAN L , HIROFUMI S . An evaluation of orbital angular momentum multiplexing technology[J]. Applied Sciences, 2019,9(9): 1729-1741. |
[30] | YUAN Y , ZHANG Z , CANG J ,et al. On the capacity of an orbital angular momentum based MIMO communication system[C]// 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway:IEEE Press, 2017: 1-7. |
[31] | TAKUICHI H . Equivalence between orbital angular momentum and multiple-input multiple-output in uniform circular arrays:Investigation by eigenvalues[J]. Microwave and Optical Technology Letters, 2018,60(5): 1072-1075. |
[32] | ZHAO L J , ZHANG H L , CHENG W C ,et al. Fractal uniform circular arrays based multi-orbital-angular-momentum-mode multiplexing vortex radio MIMO[J]. China Communications, 2018,15(9): 118-135. |
[33] | 穆春元 . 轨道角动量光束的光—声参量放大[D]. 哈尔滨:哈尔滨理工大学, 2017. |
MU C Y . Optical-acoustic parameter amplification of orbital angular momentum beams[D]. Harbin:Harbin University of Science and Technology, 2017. | |
[34] | 孙学宏, 李强, 庞丹旭 . 轨道角动量在无线通信中的研究新进展综述[J]. 电子学报, 2015,393(11): 171-180. |
SUN X H , LI Q , PANG D X . Review of new research progress of orbital angular momentum in wireless communication[J]. ACTA Electronica Sinica, 2015,393(11): 171-180. | |
[35] | 王亦楠 . 关于轨道角动量天线的研究[D]. 成都:电子科技大学, 2015. |
WANG Y N . Research on orbital angular momentum antenna[D]. Chengdu:University of Electronic Science and Technology of China, 2015. | |
[36] | 孙牧歌, 孙学宏, 常伟 . 基于环形 OAM 阵列天线的复用传输系统研究[J]. 微波学报, 2019,35(1): 38-43,48. |
SUN M G , SUN X H , CHANG W . Research on multiplexing transmission system based on loop OAM array antenna[J]. Journal of Microwaves, 2019,35(1): 38-43,48. | |
[37] | 雷星宇 . 毫米波轨道角动量反射阵天线的研究[D]. 成都:电子科技大学, 2017. |
LEI X Y . Research on angular momentum reflective array antenna with millimeter wave orbit[D]. Chengdu:University of Electronic Science and Technology of China, 2017. | |
[38] | 范迪, 沈文辉 . 基于环形缝隙介质谐振器的 OAM 天线[J]. 电子测量技术, 2018,41(18): 71-75. |
FAN D , SHEN W H . OAM antenna based on toroidal slot dielectric resonator[J]. Electronic Measurement Technology, 2018,41(18): 71-75. | |
[45] | CHEN R , XU H , MORETTI M ,et al. Beam steering for the misalignment in UCA-based OAM communication systems[J]. IEEE Wireless Communication Letters, 2018,7(4): 582-585. |
[39] | 杨鹍鹏 . 基于亚波长结构的光学OAM产生和调制方法研究[D]. 成都:中国科学院研究生院(光电技术研究所), 2016. |
[1] | 张超, 王元赫. 论涡旋电磁波轨道角动量传输新维度[J]. 通信学报, 2022, 43(6): 211-222. |
[2] | 李爽, 王平, 刘涛, 潘宇婷, 王炜. 基于波前相位校正的OAM-SK FSO通信系统误码率性能研究[J]. 通信学报, 2022, 43(5): 14-23. |
[3] | 卢汉成, 王亚正, 赵丹, 罗涛, 吴俊. 智能反射表面辅助的无线通信系统的物理层安全综述[J]. 通信学报, 2022, 43(2): 171-184. |
[4] | 唐奎, 胡琪, 赵俊明, 陈克, 冯一军. 基于RIS的室内无线通信信号增强系统[J]. 通信学报, 2022, 43(12): 24-31. |
[5] | 刘海霞, 易浩, 马向进, 乐舒瑶, 孔旭东, 马培, 曾宇鑫, 李龙. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报, 2022, 43(12): 32-44. |
[6] | 郝一诺, 钟州, 孙小丽, 金梁. 面向IoT场景的动态超表面天线密钥生成方法[J]. 通信学报, 2022, 43(12): 45-53. |
[7] | 余建军, 周雯, 王心怡, 王凯辉. 光子辅助的宽带太赫兹通信技术[J]. 通信学报, 2022, 43(1): 11-23. |
[8] | 张雷, 王勤. 基于分布式部分连接结构的多用户大规模MIMO混合预编码[J]. 通信学报, 2022, 43(1): 104-116. |
[9] | 黄源, 何怡刚, 吴裕庭, 程彤彤, 隋永波, 宁暑光. 基于深度学习的压缩感知FDD大规模MIMO系统稀疏信道估计算法[J]. 通信学报, 2021, 42(8): 61-69. |
[10] | 廖勇, 王帅, 孙宁. 快时变FDD大规模MIMO系统智能CSI反馈方法[J]. 通信学报, 2021, 42(7): 211-219. |
[11] | 刘俊, 王健. 轨道角动量光信号处理研究进展[J]. 通信学报, 2021, 42(11): 217-232. |
[12] | 王明月, 李方伟, 景小荣, 张海波, 熊军洲. 大规模MIMO-TRDMA系统中的改进SOR信号检测算法[J]. 通信学报, 2021, 42(10): 153-161. |
[13] | 张士兵,韩刘可,张美娟. 基于能量收集的全双工认知中继网络功率分配算法[J]. 通信学报, 2020, 41(9): 139-146. |
[14] | 梁应敞,谭俊杰,Dusit Niyato. 智能无线通信技术研究概况[J]. 通信学报, 2020, 41(7): 1-17. |
[15] | 林钰达,金梁,周游,楼洋明. 噪声不确定时基于波束成形的隐蔽无线通信性能分析[J]. 通信学报, 2020, 41(7): 49-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|