通信学报 ›› 2022, Vol. 43 ›› Issue (4): 143-153.doi: 10.11959/j.issn.1000-436x.2022069
赵增华, 童跃凡, 崔佳洋
修回日期:
2022-03-13
出版日期:
2022-04-25
发布日期:
2022-04-01
作者简介:
赵增华(1974- ),女,河南南乐人,天津大学副教授、硕士生导师,主要研究方向为移动和普适计算、室内定位、水下无线网络、软件定义无线网络、计算机网络协议和系统等基金资助:
Zenghua ZHAO, Yuefan TONG, Jiayang CUI
Revised:
2022-03-13
Online:
2022-04-25
Published:
2022-04-01
Supported by:
摘要:
基于Wi-Fi指纹定位方法在大规模实际应用中存在设备多样性问题,定位精度受到极大影响。提出了一种设备无关的 Wi-Fi 指纹室内定位模型 DeviceTransfer。该模型基于深度学习的域自适应理论,把智能手机的设备类型作为域,通过对抗训练来提取任务相关而设备无关的Wi-Fi数据特征,并把学习到的源域位置信息迁移到目标域上。采用预训练和联合训练来提高模型训练的稳定性并加快收敛。在教学楼和商场2个真实场景中,使用 4 台不同型号的智能手机验证模型的性能。实验结果表明,DeviceTransfer 能够有效提取设备无关的Wi-Fi数据特征。只使用一台手机在参考点采集Wi-Fi指纹,使用其他型号手机在线定位也能获得较高的定位精度,降低了定位成本。
中图分类号:
赵增华, 童跃凡, 崔佳洋. 基于域自适应的Wi-Fi指纹设备无关室内定位模型[J]. 通信学报, 2022, 43(4): 143-153.
Zenghua ZHAO, Yuefan TONG, Jiayang CUI. Device-independent Wi-Fi fingerprinting indoor localization model based on domain adaptation[J]. Journal on Communications, 2022, 43(4): 143-153.
[1] | HE S N , CHAN S H G . Wi-Fi fingerprint-based indoor positioning:recent advances and comparisons[J]. IEEE Communications Surveys& Tutorials, 2016,18(1): 466-490. |
[2] | 王慧强, 高凯旋, 吕宏武 . 高精度室内定位研究评述及未来演进展望[J]. 通信学报, 2021,42(7): 198-210. |
WANG H Q , GAO K X , LYU H W . Survey of high-precision localization and the prospect of future evolution[J]. Journal on Communications, 2021,42(7): 198-210. | |
[3] | LUI G , GALLAGHER T , LI B H ,et al. Differences in RSSI readings made by different Wi-Fi chipsets:a limitation of WLAN localization[C]// Proceedings of 2011 International Conference on Localization and GNSS (ICL-GNSS). Piscataway:IEEE Press, 2011: 53-57. |
[4] | ZHENG V W , PAN S J , YANG Q ,et al. Transferring multi-device localization models using latent multi-task learning[C]// Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence. California:AAAI Press, 2008: 1427-1432. |
[5] | TSUI A W , CHUANG Y H , CHU H H . Unsupervised learning for solving RSS hardware variance problem in Wi-Fi localization[J]. Mobile Networks and Applications, 2009,14(5): 677-691. |
[6] | HUANG C C , MANH H N , WANG Y S . An self-adaptive wireless indoor localization system for device diversity[C]// Proceedings of 2016 IEEE International Conference on Consumer Electronics. Piscataway:IEEE Press, 2016: 1-2. |
[7] | ZHANG L Y , MA L , XU Y B ,et al. Linear regression algorithm against device diversity for indoor WLAN localization system[C]// Proceedings of 2017 IEEE Global Communications Conference. Piscataway:IEEE Press, 2017: 1-6. |
[8] | ZHANG L Y , MENG X L , FANG C . Linear regression algorithm against device diversity for the WLAN indoor localization system[J]. Wireless Communications and Mobile Computing,2021, 2021:5530396. |
[9] | ZHAO H , DES-COMBES R T , ZHANG K ,et al. On learning invariant representations for domain adaptation[C]// Proceedings of the 36th International Conference on Machine Learning.[S.l.:s.n.], 2019: 7523-7532. |
[10] | YANG S , DESSAI P , VERMA M ,et al. FreeLoc:calibration-free crowdsourced indoor localization[C]// Proceedings of IEEE INFOCOM. Piscataway:IEEE Press, 2013: 2481-2489. |
[11] | CAI C W , DENG L , LI S F . CSI-based device-free indoor localization using convolutional neural networks[C]// Proceedings of 2018 IEEE 4th International Conference on Computer and Communications. Piscataway:IEEE Press, 2018: 753-757. |
[12] | ASHRAF I , KANG M Y , HUR S ,et al. MINLOC:magnetic field patterns-based indoor localization using convolutional neural networks[J]. IEEE Access, 2020,8: 66213-66227. |
[13] | WILSON G , COOK D J . A survey of unsupervised deep domain adaptation[J]. ACM Transactions on Intelligent Systems and Technology, 2020,11(5): 1-46. |
[14] | SUN B , FENG J , SAENKO K . Return of frustratingly easy domain adaptation[C]// Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. California:AAAI Press, 2016: 2058-2065. |
[15] | KANG G L , JIANG L , YANG Y ,et al. Contrastive adaptation network for unsupervised domain adaptation[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019: 4888-4897. |
[16] | GHIFARY M , KLEIJN W B , ZHANG M ,et al. Deep reconstruction-classification networks for unsupervised domain adaptation[C]// Proceedings of the European Conference on Computer Vision. Berlin:Springer, 2016: 597-613. |
[17] | BOUSMALIS K , TRIGEORGIS G , SILBERMAN N ,et al. Domain-separation networks[J]. Advances in Neural Information Processing Systems, 2016,29: 343-351. |
[18] | MATHUR A , ISOPOUSSU A , KAWSAR F ,et al. FlexAdapt:flexible cycle-consistent adversarial domain adaptation[C]// Proceedings of 2019 18th IEEE International Conference on Machine Learning and Applications. Piscataway:IEEE Press, 2019: 896-901. |
[19] | YI Z L , ZHANG H , TAN P ,et al. DualGAN:unsupervised dual learning for image-to-image translation[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 2868-2876. |
[20] | GANIN Y , LEMPITSKY V . Unsupervised domain adaptation by backpropagation[C]// Proceedings of the 32nd International Conference on Machine Learning. Cambridge:JMLR, 2015: 1180-1189. |
[21] | ZHANG W C , OUYANG W L , LI W ,et al. Collaborative and adversarial network for unsupervised domain adaptation[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 3801-3809. |
[22] | CHEN C H , MIAO Y S , LU C X ,et al. Motion transformer:transferring neural inertial tracking between domains[C]// Proceedings of the AAAI Conference on Artificial Intelligence. NewYork:ACM Press, 2019,33: 8009-8016. |
[23] | SOHN K , LEE H , YAN X . Learning structured output representation using deep conditional generative models[J]. Advances in neural information processing systems, 2015,28: 3483-3491. |
[24] | MIRZA M , OSINDERO S . Conditional generative adversarial nets[J]. arXiv Preprint,arXiv:1411.1784, 2014. |
[25] | GOODFELLOW I J , POUGET-ABADIE J , MIRZA M ,et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2014: 2672-2680. |
[26] | ZHU J Y , PARK T , ISOLA P ,et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 2242-2251. |
[27] | KINGMA D P , BA J . Adam:a method for stochastic optimization[J]. arXiv Preprint,arXiv:1412.6980, 2014. |
[28] | PASZKE A , GROSS S , CHINTALA S ,et al. Automatic differentiation in pytorch[C]// Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017). New York:Curran Associates Inc, 2017: 1-4. |
[29] | SONG X D , FAN X C , HE X J ,et al. CNNLoc:deep-learning based indoor localization with WiFi fingerprinting[C]// Proceedings of 2019 IEEE SmartWorld,Ubiquitous Intelligence & Computing,Advanced& Trusted Computing,Scalable Computing & Communications,Cloud& Big Data Computing,Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). Piscataway:IEEE Press, 2019: 589-595. |
[30] | HAN S , ZHAO C , MENG W X ,et al. Cosine similarity based fingerprinting algorithm in WLAN indoor positioning against device diversity[C]// Proceedings of 2015 IEEE International Conference on Communications. Piscataway:IEEE Press, 2015: 2710-2714. |
[31] | IOFFE S , SZEGEDY C . Batch normalization:accelerating deep net-work training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. Cambridge:JMLR, 2015: 448-456. |
[32] | XU B , WANG N , CHEN T ,et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv Preprint,arXiv:1505.00853, 2015. |
[33] | ZEILER M D , KRISHNAN D , TAYLOR G W ,et al. Deconvolutional networks[C]// Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2010: 2528-2535. |
[34] | MIYATO T , KATAOKA T , KOYAMA M ,et al. Spectral normalization for generative adversarial networks[J]. arXiv Preprint,arXiv:1802.05957, 2018. |
[35] | HE K M , ZHANG X Y , REN S Q ,et al. Identity mappings in deep residual networks[C]// Proceedings of the Computer Vision - ECCV 2016. Berlin:Springer, 2016: 630-645. |
[1] | 陈东昱, 陈华, 范丽敏, 付一方, 王舰. 基于深度学习的随机性检验策略研究[J]. 通信学报, 2023, 44(6): 23-33. |
[2] | 李荣鹏, 汪丙炎, 张宏纲, 赵志峰. 知识增强的语义通信接收端设计[J]. 通信学报, 2023, 44(6): 70-76. |
[3] | 马帅, 裴科, 祁华艳, 李航, 曹雯, 王洪梅, 熊海良, 李世银. 基于生成模型的地磁室内高精度定位算法研究[J]. 通信学报, 2023, 44(6): 211-222. |
[4] | 谢良波, 李宇洋, 王勇, 周牧, 聂伟. 基于自适应蝙蝠算法的室内RFID定位算法[J]. 通信学报, 2022, 43(8): 90-99. |
[5] | 杨洁, 董标, 付雪, 王禹, 桂冠. 基于轻量化分布式学习的自动调制分类方法[J]. 通信学报, 2022, 43(7): 134-142. |
[6] | 杨秀璋, 彭国军, 李子川, 吕杨琦, 刘思德, 李晨光. 基于Bert和BiLSTM-CRF的APT攻击实体识别及对齐研究[J]. 通信学报, 2022, 43(6): 58-70. |
[7] | 廖勇, 王世义. 高速移动环境下基于RM-Net的大规模MIMO CSI反馈算法[J]. 通信学报, 2022, 43(5): 166-176. |
[8] | 廖育荣, 王海宁, 林存宝, 李阳, 方宇强, 倪淑燕. 基于深度学习的光学遥感图像目标检测研究进展[J]. 通信学报, 2022, 43(5): 190-203. |
[9] | 谢良波, 刘西西, 王勇, 周牧, 田增山. 基于RFID载波相位的室内EKF定位算法[J]. 通信学报, 2022, 43(3): 124-134. |
[10] | 王泽宇, 布树辉, 黄伟, 郑远攀, 吴庆岗, 常化文, 张旭. 基于多模态特征的无监督领域自适应多级对抗语义分割网络[J]. 通信学报, 2022, 43(12): 157-171. |
[11] | 廖勇, 程港, 李玉杰. 基于深度展开的大规模MIMO系统CSI反馈算法[J]. 通信学报, 2022, 43(12): 77-88. |
[12] | 段雪源, 付钰, 王坤, 李彬. 基于简单统计特征的LDoS攻击检测方法[J]. 通信学报, 2022, 43(11): 53-64. |
[13] | 霍俊彦, 邱瑞鹏, 马彦卓, 杨付正. 基于最邻近帧质量增强的视频编码参考帧列表优化算法[J]. 通信学报, 2022, 43(11): 136-147. |
[14] | 康海燕, 冀源蕊. 基于本地化差分隐私的联邦学习方法研究[J]. 通信学报, 2022, 43(10): 94-105. |
[15] | 孙大洋, 石文孝, 张定国. 基于室内地图推演与信号穿墙修正的定位优化方法[J]. 通信学报, 2022, 43(10): 146-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|