通信学报 ›› 2022, Vol. 43 ›› Issue (4): 143-153.doi: 10.11959/j.issn.1000-436x.2022069

• 学术论文 • 上一篇    下一篇

基于域自适应的Wi-Fi指纹设备无关室内定位模型

赵增华, 童跃凡, 崔佳洋   

  1. 天津大学智能与计算学部,天津 300350
  • 修回日期:2022-03-13 出版日期:2022-04-25 发布日期:2022-04-01
  • 作者简介:赵增华(1974- ),女,河南南乐人,天津大学副教授、硕士生导师,主要研究方向为移动和普适计算、室内定位、水下无线网络、软件定义无线网络、计算机网络协议和系统等
    童跃凡(1999- ),女,福建莆田人,天津大学硕士生,主要研究方向为室内定位等
    崔佳洋(1998- ),男,河北唐山人,天津大学硕士生,主要研究方向为室内定位等
  • 基金资助:
    国家自然科学基金资助项目(61972283)

Device-independent Wi-Fi fingerprinting indoor localization model based on domain adaptation

Zenghua ZHAO, Yuefan TONG, Jiayang CUI   

  1. College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
  • Revised:2022-03-13 Online:2022-04-25 Published:2022-04-01
  • Supported by:
    The National Natural Science Foundation of China(61972283)

摘要:

基于Wi-Fi指纹定位方法在大规模实际应用中存在设备多样性问题,定位精度受到极大影响。提出了一种设备无关的 Wi-Fi 指纹室内定位模型 DeviceTransfer。该模型基于深度学习的域自适应理论,把智能手机的设备类型作为域,通过对抗训练来提取任务相关而设备无关的Wi-Fi数据特征,并把学习到的源域位置信息迁移到目标域上。采用预训练和联合训练来提高模型训练的稳定性并加快收敛。在教学楼和商场2个真实场景中,使用 4 台不同型号的智能手机验证模型的性能。实验结果表明,DeviceTransfer 能够有效提取设备无关的Wi-Fi数据特征。只使用一台手机在参考点采集Wi-Fi指纹,使用其他型号手机在线定位也能获得较高的定位精度,降低了定位成本。

关键词: 设备多样性, Wi-Fi指纹定位, 室内定位, 域自适应, 深度学习

Abstract:

In real-world large-scale deployments of indoor localization, Wi-Fi fingerprinting approaches suffer from device diversity problem which impacts the localization accuracy significantly.A device-independent Wi-Fi fingerprint indoor localization model DeviceTransfer was proposed.Based on the domain adaptation theory of deep learning, the device type of the smartphone was taken as the domain, the task-related and device-independent Wi-Fi data features were extracted through adversarial training, and the learned source domain location information was transferred to the target domain.Pre-training and joint training were employed to improve model training stability and to accelerate convergence.The performance of DeviceTransfer was evaluated using four types of smartphones in two real-world indoor environments: a school building and a shopping mall.The experimental results show that DeviceTransfer effectively extracts device-independent Wi-Fi fingerprint features.Using only one type of phone to collect Wi-Fi fingerprints, online localization using other types still achieves high localization accuracy, thus reducing localization cost significantly.

Key words: device diversity, Wi-Fi fingerprinting localization, indoor localization, domain adaptation, deep learning

中图分类号: 

No Suggested Reading articles found!