通信学报 ›› 2022, Vol. 43 ›› Issue (8): 151-163.doi: 10.11959/j.issn.1000-436x.2022152

• 学术论文 • 上一篇    下一篇

基于社交网络的影响力最大化算法

王璿1, 张瑜1, 周军锋1, 陈子阳1,2   

  1. 1 东华大学计算机科学与技术学院,上海201620
    2 上海立信会计金融学院信息管理学院,上海 201620
  • 修回日期:2022-07-27 出版日期:2022-08-25 发布日期:2022-08-01
  • 作者简介:王璿(1977- ),女,黑龙江齐齐哈尔人,博士,东华大学副教授,主要研究方向为数据查询、生物信息处理、分布式并行计算
    张瑜(1997- ),男,江苏泰州人,东华大学硕士生,主要研究方向为社交网络
    周军锋(1977- ),男,陕西西安人,博士,东华大学教授,主要研究方向为图数据的查询处理技术、推荐系统关键技术
    陈子阳(1973- ),男,黑龙江五常人,博士,上海立信会计金融学院教授,主要研究方向为数据库理论与技术
  • 基金资助:
    国家自然科学基金资助项目(61873337);上海自然科学基金资助项目(20ZR1402700)

Influence maximization algorithm based on social network

Xuan WANG1, Yu ZHANG1, Junfeng ZHOU1, Ziyang CHEN1,2   

  1. 1 School of Computer Science and Technology, Donghua University, Shanghai 201620, China
    2 School of Information Management, Shanghai Lixin University of Accounting and Finance, Shanghai 201620, China
  • Revised:2022-07-27 Online:2022-08-25 Published:2022-08-01
  • Supported by:
    The National Natural Science Foundation of China(61873337);The Natural Science Foundation of Shanghai(20ZR1402700)

摘要:

影响力最大化问题研究在给定传播模型下如何选取社交网络中的一组种子用户,使信息通过这些用户实现最大范围的传播。现有算法主要存在2个问题:一是由于影响范围有限、时间复杂度高,难以适用于大规模社交网络;二是仅局限于特定传播模型,只能解决单一类型社交网络下的影响力最大化问题,当使用在不同类型社交网络上时效果较差。对此,基于2个经典影响力传播模型,结合反向影响采样技术,提出一种高效的影响力最大化(MTIM)算法。为验证MTIM算法的高效性,将其与IMM、TIM和PMC等贪心算法,以及OneHop和Degree Discount等启发式算法在4个真实社交网络上进行对比实验,结果表明MTIM算法能够提供 ( 1 1 e ε ) 近似保证,显著扩大影响范围,并有效提高运行效率。

关键词: 社交网络, 影响力最大化, 种子集, 传播模型

Abstract:

The influence maximization (IM) problem asks for a group of seed users in a social network under a given propagation model, so that the information spread is maximized through these users.Existing algorithms have two main problems.Firstly, these algorithms were difficult to be applied in large-scale social networks due to limited expected influence and high time complexity.Secondly, these algorithms were limited to specific propagation models and could only solve the IM problem under a single type of social network.When they were used in different types of networks, the effect was poor.In this regard, an efficient algorithm (MTIM) based on two classic propagation models and reverse influence sampling (RIS) was proposed.To verify the effectiveness of MTIM, experiments were conducted to compare MTIM with greedy algorithms such as IMM, TIM and PMC, and heuristic algorithms such as OneHop and Degree Discount on four real social networks.The results show that MTIM can return a ( 1 1 e ε ) approximate solution, effectively expand the expected influence and significantly improve the efficiency.

Key words: social network, influence maximization, seed set, propagation model

中图分类号: 

No Suggested Reading articles found!