[1] |
KEMPE D , KLEINBERG J , TARDOS é , . Maximizing the spread of influence through a social network[C]// Proceedings of the 9th ACM SIGKDD International Conference OnKnowledge Discovery and Data Mining. New York:ACM Press, 2003: 137-146.
|
[2] |
LI Y C , FAN J , WANG Y H ,et al. Influence maximization on social graphs:a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2018,30(10): 1852-1872.
|
[3] |
PENG H , HUANG K F , YANG L X ,et al. Dynamic maintenance strategy for word-of-mouth marketing[J]. IEEE Access, 2020,8: 126496-126503.
|
[4] |
REN J F , LIU M T , LIU Y ,et al. Optimal resource allocation with spatiotemporal transmission discovery for effective disease control[J]. Infectious Diseases of Poverty, 2022,11(1): 34.
|
[5] |
PAUL A , WU Z F , LIU K ,et al. Personalized recommendation:from clothing to academic[J]. Multimedia Tools and Applications, 2022,81(10): 14573-14588.
|
[6] |
BINESH N , GHATEE M . Distance-aware optimization model for influential nodes identification in social networks with independent cascade diffusion[J]. Information Sciences, 2021,581: 88-105.
|
[7] |
BLESA M J , GARCíA-RODRíGUEZ P , SERNA M . Forward and backward linear threshold ranks[C]// Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York:ACM Press, 2021: 265-269.
|
[8] |
ALI A , WANG H , KHAN A N . Mechanism to enhance team creative performance through social media:a transactive memory system approach[J]. Computers in Human Behavior, 2018,91: 115-126.
|
[9] |
BORGS C , BRAUTBAR M , CHAYES J ,et al. Maximizing social influence in nearly optimal time[C]// Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia:Society for Industrial and Applied Mathematics, 2014: 946-957.
|
[10] |
SUN L C , HUANG W R , YU P S ,et al. Multi-round influence maximization[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM Press, 2018: 2249-2258.
|
[11] |
GUO J X , WU W L . Influence maximization:seeding based on community structure[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2020,14(6): 1-22.
|
[12] |
GUO Q T , WEI Z W ,et al. Influence maximization revisited:efficient reverse reachable set generation with bound tightened[C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 2020: 2167-2181.
|
[13] |
ARORA A , GALHOTRA S , et al . Debunking the myths of influence maximization:an in-depth benchmarking study[C]// Proceedings of the 2017 ACM International Conference on Management of Data. New York:ACM Press, 2017: 651-666.
|
[14] |
TANG Y Z , XIAO X K , et al . Influence maximization:near-optimal time complexity meets practical efficiency[C]// Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 2014: 75-86.
|
[15] |
TANG Y Z , SHI Y C , XIAO X K . Influence maximization in near-linear time:a martingale approach[C]// Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 2015: 1539-1554.
|
[16] |
TAKAI Y , MIYAUCHI A , IKEDA M ,et al. Hypergraph clustering based on PageRank[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM Press, 2020: 1970-1978.
|
[17] |
TANG J , TANG X Y , et al . Online processing algorithms for influence maximization[C]// Proceedings of the 2018 International Conference on Management of Data. New York:ACM Press, 2018: 991-1005.
|
[18] |
TANG J , TANG X Y , YUAN J S . An efficient and effective hop-based approach for influence maximization in social networks[J]. Social Network Analysis and Mining, 2018,8(1): 1-19.
|
[19] |
OHSAKA N , AKIBA T , YOSHIDA Y ,et al. Fast and accurate influence maximization on large networks with pruned Monte-Carlo simulations[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2014,28(1): 138-144.
|
[20] |
CHEN W , WANG Y J , YANG S Y . Efficient influence maximization in social networks[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2009: 199-208.
|