[1] |
刘树栋, 孟祥武 . 基于位置的社会化网络推荐系统[J]. 计算机学报, 2015,38(2): 322-336.
|
|
LIU S D , MENG X W . Recommender systems in location-based social networks[J]. Journal of Computers, 2015,38(2): 322-336.
|
[2] |
蒋仲安, 王明, 陈雅 . 基于地理坐标和轨迹数据的路径推荐方法[J]. 通信学报, 2017,38(5): 165-171.
|
|
JIANG Z A , WANG M , CHEN Y . Path recommendation based on geographic coordinates and trajectory data[J]. Journal of Communications, 2017,38(5): 165-171.
|
[3] |
MOHAMMAD A , CRESTANI F . Personalized context-aware point of interest recommendation[J]. ACM Transactions on Information Systems, 2018,36(4):28.
|
[4] |
LI X , GAO C , LI XL ,et al. Rank-GeoFM:a ranking based geographical factorization method for point of interest recommendation[C]// ACM Special Interest Group on International Retrieval. New York:ACM Press, 2015: 433-442.
|
[5] |
LIAN D , ZHENG K , GE Y ,et al. GeoMF++:scalable location recommendation via joint geographical modeling and matrix factorization[J]. ACM Transactions on Information Systems, 2018,36(3): 1-29.
|
[6] |
FAN W , LI Q , CHENG M . Deep modeling of social relations for recommendation[C]// AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2018: 8075-8076.
|
[7] |
CHEN C , ZHANG M , WANG C ,et al. An efficient adaptive transfer neural network for social-aware recommendation[C]// ACM Special Interest Group on International Retrieval. New York:ACM Press, 2019: 225-234.
|
[8] |
CHENG C , YANG H , KING I ,et al. Fused matrix factorization with geographical and social influence in location-based social networks[C]// AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2012: 1-8.
|
[9] |
ZHENG N , JIN X , LI L . Cross-region collaborative filtering for new point-of-interest recommendation[C]// Proceedings of the 22nd International Conference on World Wide Web. New York:ACM Press, 2013: 45-46.
|
[10] |
MA C , ZHANG Y , WANG Q ,et al. Point-of-Interest recommendation:exploiting self-attentive auto encoders with neighbor-aware influence[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York:ACM Press, 2018: 697-706.
|
[11] |
ZHAO Z , YANG Q , LU H ,et al. Learning max-margin geosocial multimedia network representations for point-of-interest suggestion[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM Press, 2017: 833-836.
|
[12] |
YANG C , BAI L , ZHANG C ,et al. Bridging collaborative filtering and semi-supervised learning:a neural approach for POI recommendation[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2017: 1245-1254.
|
[13] |
YING H , CHEN L , XIONG Y ,et al. PGRank:personalized geographical ranking for point-of-interest recommendation[C]// Proceedings of the 25th International Conference Companion on World Wide Web. New York:ACM Press, 2016: 137-138.
|
[14] |
HE X , LIAO L , ZHANG H ,et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference Companion on World Wide Web. New York:ACM Press, 2017: 173-182
|
[15] |
ZHENG L , CHUN T L , JIANG F ,et al. Spectral collaborative filtering[C]// Proceedings of the 12th ACM Conference on Recommender Systems. New York:ACM Press, 2018: 311-319.
|
[16] |
XIE M , YIN H , WANG H ,et al. Learning graph-based POI embedding for location-based recommendation[C]// Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York:ACM Press, 2016: 15-24.
|
[17] |
ZHANG J D , CHOW C Y . iGSLR:personalized geo-social location recommendation:a kernel density estimation approach[C]// Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM Press, 2013: 334-343.
|
[18] |
WANG H , TERROVITIS M , MAMOULIS N . Location recommendation in location-based social networks using user check-in data[C]// Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM Press, 2013: 374-383.
|
[19] |
ZHANG J D , CHOW C Y , LI Y . Lore:exploiting sequential influence for location recommendations[C]// Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM Press, 2014: 103-112.
|
[20] |
YE M , YIN P , LEE W C ,et al. Exploiting geographical influence for collaborative point-of-interest recommendation[C]// Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval. New York:ACM Press, 2011: 325-334.
|
[21] |
LIU Y , WEI W , SUN A ,et al. Exploiting geographical neighborhood characteristics for location recommendation[C]// Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. New York:ACM Press, 2014: 739-748
|
[22] |
JONATHAN L H , JOSEPH A K , LOREN G T ,et al. Evaluating collaborative filtering recommender systems[J]. ACM Transactions on Information Systems, 2004,22(1): 5-53.
|
[23] |
TANG J , HU X , GAO H ,et al. Exploiting local and global social context for recommendation[C]// Proceedings of the 23rd International Joint Conference on Artificial Intelligence. New York:ACM Press, 2013: 2712-2718.
|