通信学报 ›› 2022, Vol. 43 ›› Issue (12): 32-44.doi: 10.11959/j.issn.1000-436x.2022229
刘海霞, 易浩, 马向进, 乐舒瑶, 孔旭东, 马培, 曾宇鑫, 李龙
修回日期:
2022-11-25
出版日期:
2022-12-25
发布日期:
2022-12-01
作者简介:
刘海霞(1976– ),女,河北秦皇岛人,博士,西安电子科技大学副教授,主要研究方向为智能超材料、电路分析、无线能量传输与收集、场路协同设计基金资助:
Haixia LIU, Hao YI, Xiangjin MA, Shuyao YUE, Xudong KONG, Pei MA, Yuxin ZENG, Long LI
Revised:
2022-11-25
Online:
2022-12-25
Published:
2022-12-01
Supported by:
摘要:
可重构智能超表面(RIS)是一种新型人工电磁材料,可灵活调控电磁波的频率、幅度、相位、极化、传播方向、波形等特性。在无线通信领域,可利用RIS重构无线通信信道,实现无线信号的盲区覆盖,提高通信质量。首先,概述了RIS技术的发展和研究现状,分析了RIS的关键技术和应用场景。然后,提出了一种新型无源RIS,通过无源编码和拼接原理实现了RIS口径可重构和波束可重构特性,具有低成本、低功耗、低复杂度的优点。最后,在实际室内环境下进行了基于无源RIS的室内无线信号盲区覆盖增强实验。通过仿真与实测对比,证明了无源可拼接超表面在无线通信补盲场景应用中的有效性。此外,针对5G/6G毫米波通信,设计了双层十字交叉振子无源RIS,应用到室内典型的L形走廊场景,验证了无源RIS对室内无线信号覆盖的增强效果。
中图分类号:
刘海霞, 易浩, 马向进, 乐舒瑶, 孔旭东, 马培, 曾宇鑫, 李龙. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报, 2022, 43(12): 32-44.
Haixia LIU, Hao YI, Xiangjin MA, Shuyao YUE, Xudong KONG, Pei MA, Yuxin ZENG, Long LI. Indoor wireless signal coverage and enhancement based on passive reconfigurable intelligent metasurface[J]. Journal on Communications, 2022, 43(12): 32-44.
[1] | BOCCARDI F , HEATH R W , LOZANO A ,et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014,52(2): 74-80. |
[2] | WU Q Q , LI G Y , CHEN W ,et al. An overview of sustainable green 5G networks[J]. IEEE Wireless Communications, 2017,24(4): 72-80. |
[3] | ZHANG R , HO C K . MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2013,12(5): 1989-2001. |
[4] | LYU J B , ZHANG R . Hybrid active/passive wireless network aided by intelligent reflecting surface:system modeling and performance analysis[J]. IEEE Transactions on Wireless Communications, 2021,20(11): 7196-7212. |
[5] | RENZO M D , NTONTIN K , SONG J ,et al. Reconfigurable intelligent surfaces vs.relaying:differences,similarities,and performance comparison[J]. IEEE Open Journal of the Communications Society, 2020,1: 798-807. |
[6] | TAWALBEH M , KHAN H A , HAJAR A A ,et al. Applications of metamaterials[J]. Reference Module in Materials Science and Materials Engineering, 2022,3(2): 11-24. |
[7] | CUI T J , QI M Q , WAN X ,et al. Coding metamaterials,digital metamaterials and programmable metamaterials[J]. Light:Science & Applications, 2014,3(10): e218. |
[8] | PAN S P , FENG Y , QI L ,et al. Design of dual-band frequency reconfigurable microstrip antenna array[C]// Proceedings of 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC). Piscataway:IEEE Press, 2020: 1-3. |
[9] | NISHAMOL M S , SARIN V P , TONY D ,et al. An electronically reconfigurable microstrip antenna with switchable slots for polarization diversity[J]. IEEE Transactions on Antennas and Propagation, 2011,59(9): 3424-3427. |
[10] | GUCLU C , PERRUISSEAU-CARRIER J , CIVI O . Proof of concept of a dual-band circularly-polarized RF MEMS beam-switching reflectarray[J]. IEEE Transactions on Antennas and Propagation, 2012,60(11): 5451-5455. |
[11] | LI L , LI Y J , WU Z ,et al. Novel polarization-reconfigurable converter based on multilayer frequency-selective surfaces[J]. Proceedings of the IEEE, 2015,103(7): 1057-1070. |
[12] | 崔铁军, 金石, 章嘉懿 ,等. 智能超表面技术研究报告[R]. 2021. |
CUI T J , JIN S , ZHANG J Y ,et al. The research report of reconfigurable intelligent metasurface technology[R]. 2021. | |
[13] | LI L , CHEN Q , YUAN Q ,et al. Microstrip reflectarray using crossed-dipole with frequency selective surface of loops[C]// Proceedings of 2008 International Symposium on Antennas and Propagation (ISAP2008). Piscataway:IEEE Press, 2008: 1-4. |
[14] | LI L , CHEN Q , YUAN Q W ,et al. Novel broadband planar reflectarray with parasitic dipoles for wireless communication applications[J]. IEEE Antennas and Wireless Propagation Letters, 2009,8: 881-885. |
[15] | LI L , CHEN Q , YUAN Q W ,et al. Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications[J]. IEEE Transactions on Antennas and Propagation, 2011,59(1): 89-99. |
[16] | WU Q Q , ZHANG R . Intelligent reflecting surface enhanced wireless network:joint active and passive beamforming design[C]// Proceedings of 2018 IEEE Global Communications Conference. Piscataway:IEEE Press, 2018: 1-6. |
[17] | NEMATI M , PARK J , CHOI J . RIS-assisted coverage enhancement in millimeter-wave cellular networks[J]. IEEE Access, 2020,8: 188171-188185. |
[18] | LU Z Q , FANG Y , YI H ,et al. Broadband reflectarray for millimeter wave coverage enhancement in indoor NLOS scenario[C]// Proceedings of 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). Piscataway:IEEE Press, 2019: 1-3. |
[19] | 李双德, 刘芫健, 林乐科 . 28 GHz室内毫米波信道路径损耗模型研究[J]. 电波科学学报, 2017,32(5): 602-611. |
LI S D , LIU Y J , LIN Y K . Path loss models of millimeter-wave channel in indoor environment at 28GHz[J]. Chinese Journal of Radio Science, 2017,32(5): 602-611. | |
[20] | DORST L , FONTIJNE D , MANN S . Geometric Algebra for Computer Science[M]. Amsterdam: Elsevier, 2007. |
[21] | TIAN S C , ZHANG X M , WANG X ,et al. Recent advances in metamaterials for simultaneous wireless information and power transmission[J]. Nanophotonics, 2022,11(9): 1697-1723. |
[22] | ZHOU J F , ZHANG P , HAN J Q ,et al. Metamaterials and metasurfaces for wireless power transfer and energy harvesting[J]. Proceedings of the IEEE, 2022,110(1): 31-55. |
[23] | 李龙, 张沛, 韩家奇 ,等. 基于电磁超材料的微波无线能量传输与收集关键技术(特邀)[J]. 光子学报, 2021,50(10): 11-26. |
LI L , ZHANG P , HAN J Q ,et al. Key technologies of microwave wireless power transfer and energy harvesting based on electromagnetic metamaterials(invited)[J]. Acta Photonica Sinica, 2021,50(10): 11-26. |
[1] | 张超, 王元赫. 论涡旋电磁波轨道角动量传输新维度[J]. 通信学报, 2022, 43(6): 211-222. |
[2] | 卢汉成, 王亚正, 赵丹, 罗涛, 吴俊. 智能反射表面辅助的无线通信系统的物理层安全综述[J]. 通信学报, 2022, 43(2): 171-184. |
[3] | 唐奎, 胡琪, 赵俊明, 陈克, 冯一军. 基于RIS的室内无线通信信号增强系统[J]. 通信学报, 2022, 43(12): 24-31. |
[4] | 郝一诺, 钟州, 孙小丽, 金梁. 面向IoT场景的动态超表面天线密钥生成方法[J]. 通信学报, 2022, 43(12): 45-53. |
[5] | 黄源, 何怡刚, 吴裕庭, 程彤彤, 隋永波, 宁暑光. 基于深度学习的压缩感知FDD大规模MIMO系统稀疏信道估计算法[J]. 通信学报, 2021, 42(8): 61-69. |
[6] | 张士兵,韩刘可,张美娟. 基于能量收集的全双工认知中继网络功率分配算法[J]. 通信学报, 2020, 41(9): 139-146. |
[7] | 梁应敞,谭俊杰,Dusit Niyato. 智能无线通信技术研究概况[J]. 通信学报, 2020, 41(7): 1-17. |
[8] | 林钰达,金梁,周游,楼洋明. 噪声不确定时基于波束成形的隐蔽无线通信性能分析[J]. 通信学报, 2020, 41(7): 49-58. |
[9] | 郑凤,陈艺戬,冀思伟,段高明,郁光辉. 轨道角动量通信技术的研究[J]. 通信学报, 2020, 41(5): 150-158. |
[10] | 张达,王济农,冀虎,纪浩,赵云峰. 矿山微功耗安全监测物联网系统的研究与应用[J]. 通信学报, 2020, 41(2): 44-57. |
[11] | 桂冠,王禹,黄浩. 基于深度学习的物理层无线通信技术:机遇与挑战[J]. 通信学报, 2019, 40(2): 19-23. |
[12] | 房卫东,张武雄,胡明明,陈伟,杨旸. 基于改进LDPC码的短距离跳频无线通信系统[J]. 通信学报, 2017, 38(12): 34-47. |
[13] | 王俊,赵宏志,马万治,唐友喜,卿朝进. 同时同频全双工宽带射频自干扰抵消性能分析[J]. 通信学报, 2016, 37(9): 121-130. |
[14] | 胡莹,冀保峰,黄永明,俞菲,杨绿溪. 大规模MIMO OFDMA下行系统能效资源分配算法[J]. 通信学报, 2015, 36(7): 1-49. |
[15] | 顾浙骐,张志培. 基于协作多点传输的非线性顽健预编码[J]. 通信学报, 2015, 36(10): 140-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|