Chinese Journal on Internet of Things ›› 2022, Vol. 6 ›› Issue (4): 53-64.doi: 10.11959/j.issn.2096-3750.2022.00281
• Theory and Technology • Previous Articles Next Articles
Fangyuan XING1,2, Shibo HE2, Mingyang SUN2, Jiming CHEN2
Revised:
2022-09-13
Online:
2022-12-30
Published:
2022-12-01
Supported by:
CLC Number:
Fangyuan XING, Shibo HE, Mingyang SUN, Jiming CHEN. Carbon emission monitoring based on internet of things with cloud-tube-edge-end structure[J]. Chinese Journal on Internet of Things, 2022, 6(4): 53-64.
"
对比项 | 大气 | 固定污染源废气 | 所需传感器/检测器 |
CO2 | 非分散红外法 | 非分散红外法 | 红外二氧化碳传感器 |
傅里叶变换红外光谱法 | 傅里叶变换红外光谱法 | 催化二氧化碳传感器 | |
光腔衰荡光谱法 | 离轴积分腔输出光谱法 | 热传导二氧化碳传感器 | |
可调谐半导体激光吸收光谱法 | |||
CH4 | 气相色谱法 | 气相色谱法 | 红外甲烷传感器 |
非分散红外法 | 非分散红外法 | ||
傅里叶变换红外光谱法 | 傅里叶变换红外光谱法 | ||
离轴积分腔输出光谱法 | |||
可调谐半导体激光吸收光谱法 | |||
N2O | 非分散红外法 | 非分散红外法 | 红外一氧化二氮传感器 |
傅里叶变换红外光谱法 | 傅里叶变换红外光谱法 | 量子级联激光一氧化二氮分析仪 | |
光腔衰荡光谱法 | |||
含氟等其他温室气体 | 气相色谱法 | 气相色谱法 | 氟气传感器 |
"
自动监测技术 | 适用场景 | 优点 | 缺点 |
气相色谱法 | 常用于检测CH4 | 具有较高的灵敏度和重复性 | 对载气、助燃气和工作标气需求较大 |
易受环境温度影响 | |||
非分散红外法 | 常用于检测CO2、CH4、N2O | 原理简单、成本低 | 测量CH4、N2O精度较低 |
测量CO2精度较高 | |||
傅里叶变换红外光谱法 | 常用于检测浓度较小范围内的 CO2、 | 可实现多组分同时检测 | 检测下限易受到气体吸收光程的影响 |
CH4、N2O | |||
光腔衰荡光谱法 | 常用于检测CO2、N2O | 精密度最高、稳定性好 | 仪器价格和运维成本昂贵 |
离轴积分腔输出光谱法 | 常用于检测废气中的 CO2、N2O,以及 | 灵敏度高、响应时间快 | 系统噪声较大 |
勘探深海可燃冰 | 频率调制技术装置比较复杂 | ||
可调谐半导体激光吸收光 | 常用于检测含氟温室气体及有毒有害 | 高灵敏度 | 易受测量环境温度影响 |
谱法 | 气体等 | 检测速度快 | |
可实现多组分同时检测 |
[1] | 潘晓滨, 朱旭 . 我国碳排放许可制的必要性分析[J]. 资源节约与环保, 2021(1): 144-145. |
PAN X B , ZHU X . Analysis on the necessity of carbon emission permit system in China[J]. Resources Economization & Environmental Protection, 2021(1): 144-145. | |
[2] | 刘佳, 余星, 鞠学泉 . 关于建立上海市碳排放监测、报告体系的设想[J]. 上海节能, 2014(2): 12-18. |
LIU J , YU X , JU X Q . Conceiving of Shanghai's building carbon emission monitoring and reporting system[J]. Shanghai Energy Conservation, 2014(2): 12-18. | |
[3] | 任亚运, 傅京燕 . 碳交易的减排及绿色发展效应研究[J]. 中国人口·资源与环境, 2019,29(5): 11-20. |
REN Y Y , FU J Y . Research on the effect of carbon emissions trading on emission reduction and green development[J]. China Population,Resources and Environment, 2019,29(5): 11-20. | |
[4] | 李鹏, 吴文昊, 郭伟 . 连续监测方法在全国碳市场应用的挑战与对策[J]. 环境经济研究, 2021,6(1): 77-92. |
LI P , WU W H , GUO W . The challenges and recommendations of application of the measurement-based monitoring methodology in national carbon market[J]. Journal of Environmental Economics, 2021,6(1): 77-92. | |
[5] | US EPA. Mandatory reporting of greenhouse gases final rule[R]. 2009. |
[6] | 孙天晴, 刘克, 杨泽慧 ,等. 国外碳排放MRV体系分析及对我国的借鉴研究[J]. 中国人口·资源与环境, 2016,26(S1): 17-21. |
SUN T Q , LIU K , YANG Z H ,et al. Analysis and reference of foreign carbon emissions MRV system to China[J]. China Population,Re-sources and Environment, 2016,26(S1): 17-21. | |
[7] | 董文福, 刘泓汐, 王秀琴 ,等. 美国温室气体强制报告制度综述[J]. 中国环境监测, 2011,27(2): 18-22. |
DONG W F , LIU H X , WANG X Q ,et al. Review of mandatory re-porting of greenhouse gases in America[J]. Environmental Monitoring in China, 2011,27(2): 18-22. | |
[8] | 周颖, 张宏伟, 刘兰翠 ,等. 欧盟和美国温室气体排放监测对中国的借鉴意义[J]. 中国环境监测, 2013,29(5): 1-5. |
ZHOU Y , ZHANG H W , LIU L C ,et al. The green house gas monitor-ing in EU and America and their significance as reference to China[J]. Environmental Monitoring in China, 2013,29(5): 1-5. | |
[9] | 滕飞, 冯相昭 . 日本碳市场测量、报告与核查系统建设的经验及启示[J]. 环境保护, 2012,40(10): 72-74. |
TENG F , FENG X Z . The experience and enlightenment of Japan's carbon market measurement,reporting and verification system con-struction[J]. Environmental Protection, 2012,40(10): 72-74. | |
[10] | 全国碳排放管理标准化技术委员会. 温室气体排放核算与报告要求:煤炭生产企业:GB/T 32151.11-2018[S]. 2018. |
National Technical Committee on Carbon Emission Management of Standardization Administration. GHG emission accounting and reporting requirements:coal producing enterprises:GB/T 32151.11- 2018[S]. 2018. | |
[11] | 全国碳排放管理标准化技术委员会. 温室气体排放核算与报告要求:纺织服装企业:GB/T 32151.12-2018[S]. 2015. |
National Technical Committee on Carbon Emission Management of Standardization Administration. GHG emission accounting and re-porting requirements:textile and garment enterprise:GB/T 32151.12-2018[S]. 2018. | |
[12] | 高春艳, 牛建广, 王斐然 . 钢材生产阶段碳排放核算方法和碳排放因子研究综述[J]. 当代经济管理, 2021,43(8): 33-38. |
GAO C Y , NIU J G , WANG F R . Review of carbon emission account-ing methods and carbon emission factor in steel production[J]. Con-temporary Economic Management, 2021,43(8): 33-38. | |
[13] | 余碧莹, 赵光普, 安润颖 ,等. 碳中和目标下中国碳排放路径研究[J]. 北京理工大学学报(社会科学版), 2021,23(2): 17-24. |
YU B Y , ZHAO G P , AN R Y ,et al. Research on China's CO2emission pathway under carbon neutral target[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021,23(2): 17-24. | |
[14] | 田文爽, 李欣, 白鹏翔 . 流程模拟技术在合成氨工业CO2排放核算中的应用[J]. 石油石化绿色低碳, 2020,5(6): 69-74. |
TIAN W S , LI X , BAI P X . Application of process simulation in CO2 emission accounting of ammonia industry[J]. Green Petroleum & Pe-trochemicals, 2020,5(6): 69-74. | |
[15] | 姚聪林, 朱红春, 姜周华 ,等. 全废钢连续加料电弧炉短流程碳排放计算及分析[J]. 材料与冶金学报, 2020,19(4): 259-264. |
YAO C L , ZHU H C , JIANG Z H ,et al. CO2emissions calculation and analysis of electric arc furnace with continuous feeding of only scrap[J]. Journal of Materials and Metallurgy, 2020,19(4): 259-264. | |
[16] | 黄小菲 . 能源产业结构优化研究[J]. 产业创新研究, 2020(22): 76-78. |
HUANG X F . Research on energy industry structure optimization[J]. Industrial Innovation, 2020(22): 76-78. | |
[17] | 王霂晗, 朱林, 张晶杰 ,等. 欧盟火电厂二氧化碳排放在线监测系统质量保证体系对中国的启示[J]. 中国电力, 2020,53(3): 154-158,176. |
WANGM H , ZHU L , ZHANG J J ,et al. Practice of quality assurance system of carbon dioxide emission on-line monitoring system in the European union[J]. Electric Power, 2020,53(3): 154-158,176. | |
[18] | 王小龙, 王强, 王小峰 ,等. 燃煤电厂关键排放因子对碳排放量影响研究[J]. 山东化工, 2019,48(23): 239-243. |
WANG X L , WANG Q , WANG X F ,et al. A study on the influence of key emission factors of coal-fired power plant on carbon emission[J]. Shandong Chemical Industry, 2019,48(23): 239-243. | |
[19] | 王芹, 冯景春, 冯开 . 气相色谱法及其应用[J]. 广东化工, 2014,41(12): 202,208. |
WANG Q , FENG J C , FENG K . Gas chromatography and its applica-tion[J]. Guangdong Chemical Industry, 2014,41(12): 202,208. | |
[20] | 袁超, 何保山, 韩小贤 ,等. 二氧化碳气体检测研究进展[J]. 江西农业学报, 2009,21(6): 133-136,140. |
YUAN C , HE B S , HAN X X ,et al. Research advance in detection of carbon dioxide[J]. Acta Agriculturae Jiangxi, 2009,21(6): 133-136,140. | |
[21] | 徐寅 . 气相色谱法在大气污染监测中的运用[J]. 绿色科技, 2017(8): 89-90. |
XU Y . Application of gas chromatography in air pollution monitor-ing[J]. Journal of Green Science and Technology, 2017(8): 89-90. | |
[22] | 刘顺, 张慧丽 . 一氧化碳非分散红外法性能指标确定方法的探讨[J]. 环境保护与循环经济, 2019,39(2): 74-76. |
LIU S , ZHANG H L . Discussion on determination method of perfor-mance index of carbon monoxide nondispersive infrared method[J]. Environmental Protection and Circular Economy, 2019,39(2): 74-76. | |
[23] | 袁博, 袁宇鹏, 张祖伟 ,等. 基于差分吸收检测技术的非分散红外CO2呼吸气体传感器[J]. 重庆邮电大学学报(自然科学版), 2021,33(1): 118-125. |
YUAN B , YUAN Y P , ZHANG Z W ,et al. Non-dispersive infrared CO2breathing gas sensor based on differential absorption detection technology[J]. Journal of Chongqing University of Posts and Tele-communications (Natural Science Edition), 2021,33(1): 118-125. | |
[24] | 周阳, 尹强, 毛沅文 ,等. 傅里叶变换红外光谱法测定食品添加剂二氧化碳中的二氧化氮[J]. 化学分析计量, 2020,29(S1): 27-30. |
ZHOU Y , YIN Q , MAOY W ,et al. Determination of nitrogen dioxide in food additive carbon dioxide by Fourier transform infrared spec-troscopy[J]. Chemical Analysis and Meterage, 2020,29(S1): 27-30. | |
[25] | 国家质量监督检验检疫总局,中国国家标准化管理委员会. 大气二氧化碳(CO2)光腔衰荡光谱观测系统:GB/T 34415—2017[S]. 2017. |
General Administration of Quality Supervision,Inspection and Qua-rantine of the People's Republic of China,Standardization Administra-tion of the People's Republic of China. Cavity ring-down spectroscopy system for measurement of atmospheric carbon dioxide:GB/T 34415—2017[S]. 2017. | |
[26] | 王星, 周泽义 . 基于光腔衰荡光谱法测量CO2结果的不确定度分析[J]. 计量技术, 2016(11): 3-6. |
WANG X , ZHOU Z Y . Uncertainty analysis of CO2 measurement results based on optical cavity ring-down spectroscopy[J]. Measure-ment Technique, 2016(11): 3-6. | |
[27] | 李青原, 李静, 魏鑫 ,等. 基于光腔衰荡光谱的便携式呼气异戊二烯分析仪性能评估[J]. 光谱学与光谱分析, 2021,41(8): 2415-2419. |
LI Q Y , LI J , WEI X ,et al. Performance evaluation of a portable breath isoprene analyzer based on cavity ringdown spectroscopy[J]. Spec-troscopy and Spectral Analysis, 2021,41(8): 2415-2419. | |
[28] | 国家质量监督检验检疫总局,中国国家标准化管理委员会. 温室气体二氧化碳测量离轴积分腔输出光谱法:GB/T 34286—2017[S]. 2017. |
General Administration of Quality Supervision,Inspection and Qua-rantine of the People's Republic of China,Standardization Administra-tion of the People's Republic of China. Greenhouse gas—Carbon dio-xide measurement—Off-axis integrated cavity output spectroscopy method:GB/T 34286—2017[S]. 2017. | |
[29] | 董洋, 王静静, 周心禺 ,等. 基于离轴积分腔输出光谱的深海可燃冰探测技术[J]. 中国激光, 2020,47(8): 0811003. |
DONG Y , WANG J J , ZHOU X Y ,et al. Detection of methane hydrate in deep sea based on off-axis integrated cavity output spectroscopy[J]. Chinese Journal of Lasers, 2020,47(8): 0811003. | |
[30] | 周子昕, 黄印博, 卢兴吉 ,等. 再入射离轴积分腔输出光谱干涉噪声处理方法[J]. 量子电子学报, 2019,36(6): 651-657. |
ZHOU Z X , HUANG Y B , LU X J ,et al. Method of suppressing in-terference noise for re-injection off-axis integrated cavity output spec-troscopy[J]. Chinese Journal of Quantum Electronics, 2019,36(6): 651-657. | |
[31] | 宋雪梅, 刘建国, 张玉钧 ,等. 可调谐半导体激光吸收光谱法监测二氧化碳的通量[J]. 光谱学与光谱分析, 2011,31(1): 184-187. |
SONG X M , LIU J G , ZHANG Y J ,et al. Monitoring the flux of car-bon dioxide gas with tunable diode laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011,31(1): 184-187. | |
[32] | 祝仰坤 . 波长调制吸收光谱的关键技术研究[D]. 南京:东南大学, 2019. |
ZHU Y K . Research on key technology of wavelength modulation spectroscopy[D]. Nanjing:Southeast University, 2019. | |
[33] | 朴植 . 基于STM32的物联网通用中继节点的设计与实现[D]. 成都:电子科技大学, 2017. |
PIAO Z . The design and implementation of IoT gateway based on STM32[D]. Chengdu:University of Electronic Science and Technology of China, 2017. | |
[34] | 毛明健 . 环境监测物联网关键技术研究[D]. 重庆:重庆大学, 2019. |
MAO M J . Research on key technologies of internet of things for environment monitoring[D]. Chongqing:Chongqing University, 2019. | |
[35] | LAZARESCU M T . Design of a WSN platform for long-term environmental monitoring for IoT applications[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2013,3(1): 45-54. |
[36] | WU F , RüDIGER C , YUCEM R . Real-time performance of a self-powered environmental IoT sensor network system[J]. Sensors (Basel,Switzerland), 2017,17(2): 282. |
[37] | TANG J , DONG T T , LI L H ,et al. Intelligent monitoring system based on internet of things[J]. Wireless Personal Communications, 2018,102(2): 1521-1537. |
[38] | FUERTES W , CARRERA D , VILLACíS C ,et al. Distributed system as internet of things for a new low-cost,air pollution wireless monitoring on real time[C]// Proceedings of 2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). Piscataway:IEEE Press, 2015: 58-67. |
[39] | IBRAHIM M , ELGAMRI A , BABIKER S ,et al. Internet of things based smart environmental monitoring using the Raspberry-Pi computer[C]// Proceedings of 2015 Fifth International Conference on Digital Information Processing and Communications (ICDIPC). Piscataway:IEEE Press, 2015: 159-164. |
[40] | 段仲渊 . 城市交通排放监测平台建设与应用[J]. 交通与运输, 2019,32(S1): 154-159. |
DUAN Z Y . Construction and application of urban traffic emission monitoring platform[J]. Traffic & Transportation, 2019,32(S1): 154-159. | |
[41] | 徐巧年 . 基于物联网的肉羊养殖基地环境监测系统设计[J]. 信息技术与信息化, 2020(9): 34-36. |
XU Q N . Design of environmental monitoring system for Mutton sheep breeding base based on internet of things[J]. Information Tech-nology and Informatization, 2020(9): 34-36. | |
[42] | AL-ZINATI M , ALRASHDAN R , AL-DUWAIRI B , ,et al. A re-organizing bio surveillance framework based on fog and mobile edge computing[J]. Multimedia Tools and Applications, 2021,80(11): 16805-16825. |
[43] | 林彦廷 . 基于无线传感器技术的水环境监测系统设计与实现[D]. 长沙:湖南大学, 2018. |
LIN Y T . Design and implementation of water environment monitoring system based on wireless sensor technology[D]. Changsha:Hunan University, 2018. | |
[44] | 周凌晞, 刘立新, 张晓春 ,等. 我国温室气体本底浓度网络化观测的初步结果[J]. 应用气象学报, 2008,19(6): 641-645. |
ZHOU L X , LIU L X , ZHANG X C ,et al. Preliminary results on network observation of greenhouse gases at China GAW stations[J]. Journal of Applied Meteorological Science, 2008,19(6): 641-645. | |
[45] | 中国电力企业联合会. 中国电力行业年度发展报告 2016[J]. 电器工业, 2016(9): 18-23. |
China Electricity Council. Annual development report of power indus-try in China[J]. China Electrical Equipment Industry, 2016(9): 18-23. | |
[46] | LAMAN , HAUGEN . Implementing OPC-UA services for industrial cyber-physical systems in service-oriented architecture[C]// Proceedings of IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. Piscataway:IEEE Press, 2019: 5486-5492. |
[47] | LEE Y K , LEE S J , LEE H ,et al. Implementation of distributed smart factory platform based on edge computing and OPC UA[C]// Proceedings of IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. Piscataway:IEEE Press, 2019: 4235-4239. |
[48] | GRO?MANN D , BREGULLA M , BANERJEE S ,et al. OPC UA server aggregation—The foundation for an Internet of portals[C]// Proceedings of the 2014 IEEE Emerging Technology and Factory Automation. Piscataway:IEEE Press, 2014: 1-6. |
[1] | Junge LIANG, Yiran SONG, Yangfan SUN, Yingying JI, Lijia PAN, Yi SHI. Research progress of human health IoT based on wearable and implantable techniques [J]. Chinese Journal on Internet of Things, 2023, 7(2): 26-34. |
[2] | Nongyu WEI, Zilong JIANG, Fangjiong CHEN. AODV protocol for acoustic-radio integrated network based on location information and energy balance [J]. Chinese Journal on Internet of Things, 2023, 7(1): 27-36. |
[3] | Jing WANG, Lesheng HE, Zhonghong LI, Luchi LI, Hang YANG. Software and hardware co-design of lightweight authenticated ciphers ASCON for the internet of things [J]. Chinese Journal on Internet of Things, 2022, 6(4): 139-148. |
[4] | Weijin JIANG, Tiantian LUO, Ying YANG, En LI, Wenying ZHOU. Private data access control model based on block chain technology in the internet of things environment [J]. Chinese Journal on Internet of Things, 2022, 6(4): 169-182. |
[5] | Jing YANG, Jinfeng XIE, Yi CHEN. A study of testing-index and certification systems of IoT terminals for smart city in China [J]. Chinese Journal on Internet of Things, 2022, 6(2): 26-37. |
[6] | Dan LUO, Ruzhi XU, Zhitao GUAN. Differential privacy budget optimization based on deep learning in IoT [J]. Chinese Journal on Internet of Things, 2022, 6(2): 65-76. |
[7] | Zihui LUO, Chengling JIANG, Liang LIU, Xiaolong ZHENG, Huadong MA. Research on deep reinforcement learning based intelligent shop scheduling method [J]. Chinese Journal on Internet of Things, 2022, 6(1): 53-64. |
[8] | Minmin MAO, Jiaqi JU, Yuling OUYANG, Yan JIN. Design and implementation of NB-IoT based environmental temperature and humidity monitoring system [J]. Chinese Journal on Internet of Things, 2021, 5(4): 99-106. |
[9] | Shiyou GUAN, Zaiqun WU. Design and application of a lightweight management software for Internet of things node [J]. Chinese Journal on Internet of Things, 2021, 5(4): 145-152. |
[10] | Mengya LI, Zhengquan LI. A NB-IoT access scheme based on Beta distribution [J]. Chinese Journal on Internet of Things, 2021, 5(3): 70-77. |
[11] | Chaojie GU, Rui TAN. LoRaWAN technologies for enabling new generation Internet of things [J]. Chinese Journal on Internet of Things, 2021, 5(2): 18-25. |
[12] | Yuan HUANG, Gang WU, Junyong LIU, Chenxi YANG, Mengpin GAO. Research and design of the intelligent energy management and control platform in the airport area based on the IoT technology [J]. Chinese Journal on Internet of Things, 2021, 5(2): 125-133. |
[13] | Wenke YU,Yuan CHENG,Fang LI,Qi ZHAO. Analysis and suggestions on the development of IoT technology [J]. Chinese Journal on Internet of Things, 2020, 4(4): 105-109. |
[14] | Caili GUO,Jiujiu CHEN,Yidi XUAN,He ZHANG. Research on the spectrum sensing and sharing technology in the dynamic spatiotemporal data driven cognitive Internet of vehicles [J]. Chinese Journal on Internet of Things, 2020, 4(3): 96-105. |
[15] | Haojie HUANG,Xiaoxiao WU,Gangqiang LI. Anomaly detection and location of malicious node for IoT based on smart contract in blockchain network [J]. Chinese Journal on Internet of Things, 2020, 4(2): 58-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|