[1] |
王勇博 . 采用遗传算法优化地铁多区间速度曲线和停站时间实现牵引节能的仿真研究[D]. 南京:南京理工大学, 2013.
|
|
WANG Y B . Simulation research on traction energy saving by using genetic algorithm to optimize multi interval speed curve and stop time of Metro[D]. Nanjing:Nanjing University of Science and Technology, 2013.
|
[2] |
WANG G Y , XIAO S , CHEN X ,et al. Application of genetic algorithm in automatic train operation[J]. Wireless Personal Communications, 2018,102(2): 1695-1704.
|
[3] |
何之煜, 徐宁 . 非参数化迭代学习控制的列车自动驾驶控制算法[J]. 铁道学报, 2020,42(12): 90-96.
|
|
HE Z Y , XU N . Automatic train operation control algorithm based on nonparametric iterative learning control[J]. Journal of the China Railway Society, 2020,42(12): 90-96.
|
[4] |
GONG D D , LI G L . Research on multi-objective optimized target speed curve of subway operation based on ATO system[J]. International Core Journal of Engineering, 2020,6(2): 133-137.
|
[5] |
杨杰, 吴佳焱, 王彪 ,等. 基于启发式遗传算法的列车节能运行目标速度曲线优化算法研究[J]. 铁道学报, 2019,41(8): 1-8.
|
|
YANG J , WU J Y , WANG B ,et al. Optimization algorithm of target speed curve of train energy saving operation based on heuristic genetic algorithm[J]. Journal of the China Railway Society, 2019,41(8): 1-8.
|
[6] |
唐振韬, 邵坤, 赵冬斌 ,等. 深度强化学习进展:从 AlphaGo 到AlphaGo Zero[J]. 控制理论与应用, 2017,34(12): 1529-1546.
|
|
TANG Z T , SHAO K , ZHAO D B ,et al. Progress of deep reinforcement learning:from AlphagGo to AlphaGo Zero[J]. Control Theory and Application, 2017,34(12): 1529-1546.
|
[7] |
程瑞军, 陈德旺, 田丽君 . 基于人机混合智能的地铁列车增强智能驾驶框架研究[C]// 2020 中国自动化大会(CAC2020)论文集. 北京:中国自动化学会, 2020.
|
|
CHENG R J , CHEN D W , TIAN L J . Research on the framework of metro train enhanced intelligent driving based on man machine hybrid intelligence[C]// Proceedings of the China Society of Automation. Beijing:China Society of Automation, 2020.
|
[8] |
唐川, 陶业荣, 麻曰亮 . AlphaZero原理与启示[J]. 航空兵器, 2020,27(3): 27-36.
|
|
TANG C , TAO Y R , MA Y L . Principle and enlightenment of AlphaZero[J]. Aero Weaponry, 2020,27(3): 27-36.
|
[9] |
郑南宁 . 人工智能新时代[J]. 智能科学与技术学报, 2019,1(1): 1-3.
|
|
ZHENG N N . The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 1-3.
|
[10] |
冷勇林, 陈德旺, 阴佳腾 . 基于专家系统及在线调整的列车智能驾驶算法[J]. 铁道学报, 2014(2): 62-68.
|
|
LENG Y L , CHEN D W , YIN J T . An intelligent train operation (ITO) algorithm based on expert system and online adjustment[J]. Journal of the China Railway Society, 2014(2): 62-68.
|
[11] |
YIN J T , CHEN D W , LI L X . Intelligent train operation algorithms for subway by expert system and rein for cement learning[J]. IEEE Transaction son Intelligent Transportation Systems, 2014,15(6): 2561-2571.
|
[12] |
ZHANG H R , JIA L M , WANG L . Energy consumption optimization of train operation for railway systems:algorithm development and real-world case Study[J]. Journal of Cleaner Production, 2019,214: 1024-1037.
|
[13] |
关于福州市轨道交通 1 号线工程(一期)竣工环保验收调查报告的公示[Z]. 2019.
|
|
Publicity of investigation report on environmental protection acceptance of Fuzhou rail transit line 1 project (phase I)[Z]. 2019.
|
[14] |
关于福州市轨道交通2号线工程竣工环保验收报告的公示[Z]. 2021.
|
|
Publicity of environmental protection acceptance report of Fuzhou rail transit line 2 project[Z]. 2021.
|
[15] |
李卓玥 . 群智能算法在列车运行速度曲线节能优化中的研究[D]. 北京:北京交通大学, 2016.
|
|
LI Z Y . Research on energy-saving optimization of train speed trajectories based on swarm intelligence algorithms[D]. Beijing:Beijing Jiaotong University, 2016.
|
[16] |
ZHAO X H , KE B R , LIAN K L . Optimization of train speed curve for energy saving using efficient and accurate electric traction models on the mass rapid transit system[J]. IEEE Transactions on Transportation Electrification, 2018,4(4): 922-935.
|
[17] |
KIM K M , SUK-MUM O ,, HAN M . A mathematical approach for reducing the maximum traction energy; the case of Korean MRT trains[C]// Proceedings of the International Multi Conference of Engineers and Computer Scientists.[S.l.:s.n.], 2010: 2169-2173.
|