智能科学与技术学报 ›› 2021, Vol. 3 ›› Issue (4): 387-398.doi: 10.11959/j.issn.2096-6652.202139
• 评论智能 • 下一篇
李小双1,2, 王晓1,3, 杨林瑶1,2, 田永林1, 王雨桐1, 张俊4, 王飞跃1,3
修回日期:
2021-11-25
出版日期:
2021-12-15
发布日期:
2021-12-01
作者简介:
李小双(1995- ),男,中国科学院自动化研究所复杂系统管理与控制国家重点实验室博士生,主要研究方向为模仿学习、深度强化学习基金资助:
Xiaoshuang LI1,2, Xiao WANG1,3, Linyao YANG1,2, Yonglin TIAN1, Yutong WANG1, Jun ZHANG4, Fei-Yue WANG1,3
Revised:
2021-11-25
Online:
2021-12-15
Published:
2021-12-01
Supported by:
摘要:
随着新能源设备的大规模接入,大电网系统的脆弱性、开放性和不确定性显著上升,系统的管理与控制面临重大的挑战。构建基于平行系统与元宇宙思想的平行电网系统,形成虚实融合的智能大电网管理与控制理论方法,是解决上述问题的一种可行途径。介绍平行电网系统MetaGrid的基本体系架构,在此基础上分析平行电网系统的关键技术,并展望平行电网潜在的应用场景。基于300节点热稳案例,提供一个平行电网应用案例的原型。期望通过构建平行电网系统,对实际电网系统进行精准建模,借助大规模的计算实验和虚实闭环的平行执行,实现实际电网系统和人工电网系统的虚实互动,促进电力系统从依赖仿真的管控走向基于平行电网的智能管理与控制。
中图分类号:
李小双, 王晓, 杨林瑶, 等. 元电网MetaGrid:基于平行电网的新一代智能电网的体系与架构[J]. 智能科学与技术学报, 2021, 3(4): 387-398.
Xiaoshuang LI, Xiao WANG, Linyao YANG, et al. MetaGrid: a parallel grids based approach for next generation smart power systems[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 387-398.
[1] | 舒印彪, 张智刚, 郭剑波 ,等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017,37(1): 1-9. |
SHU Y B , ZHANG Z G , GUO J B ,et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017,37(1): 1-9. | |
[2] | 田立亭, 程林, 郭剑波 ,等. 虚拟电厂对分布式能源的管理和互动机制研究综述[J]. 电网技术, 2020,44(6): 2097-2108. |
TIAN L T , CHENG L , GUO J B ,et al. A review on the study of management and interaction mechanism for distributed energy in virtual power plants[J]. Power System Technology, 2020,44(6): 2097-2108. | |
[3] | GRIEVES M W . Product lifecycle management:the new paradigm for enterprises[J]. International Journal of Product Development, 2005,2(1/2): 71. |
[4] | 杨林瑶, 陈思远, 王晓 ,等. 数字孪生与平行系统:发展现状、对比及展望[J]. 自动化学报, 2019,45(11): 2001-2031. |
YANG L Y , CHEN S Y , WANG X ,et al. Digital twins and parallel systems:state of the art,comparisons and prospect[J]. Acta Automatica Sinica, 2019,45(11): 2001-2031. | |
[5] | 白浩, 周长城, 袁智勇 ,等. 基于数字孪生的数字电网展望和思考[J]. 南方电网技术, 2020,14(8): 18-24,40. |
BAI H , ZHOU C C , YUAN Z Y ,et al. Prospect and thinking of digital power grid based on digital twin[J]. Southern Power System Technology, 2020,14(8): 18-24,40. | |
[6] | 张俊, 许沛东, 王飞跃 . 平行系统和数字孪生的一种数据驱动形式表示及计算框架[J]. 自动化学报, 2020,46(7): 1346-1356. |
ZHANG J , XU P D , WANG F Y . Parallel systems and digital twins:a data-driven mathematical representation and computational framework[J]. Acta Automatica Sinica, 2020,46(7): 1346-1356. | |
[7] | JAYNES C , SEALES W B , CALVERT K ,et al. The metaverse:a networked collection of inexpensive,self-configuring,immersive environments[C]// Proceedings of the Workshop on Virtual Environments 2003-EGVE’03. New York:ACM Press, 2003. |
[8] | ONDREJKA C . Escaping the gilded cage:user created content and building the metaverse[J]. New York Law School Law Review, 2004,49:81. |
[9] | DUAN H H , LI J Y , FAN S Z ,et al. Metaverse for social good:a university campus prototype[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York:ACM Press, 2021: 153-161. |
[10] | STEPHENSON N . Snow crash[M].[S.l.:s.n.], 2014. |
[11] | WANG F Y . The emergence of intelligent enterprises:from CPS to CPSS[J]. IEEE Intelligent Systems, 2010,25(4): 85-88. |
[12] | 王飞跃 . 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004,19(5): 485-489,514. |
WANG F Y . Parallel system methods for management and control of complex systems[J]. Control and Decision, 2004,19(5): 485-489,514. | |
[13] | 王飞跃 . 关于复杂系统研究的计算理论与方法[J]. 中国基础科学, 2004,6(5): 3-10. |
WANG F Y . Computational theory and method on complex system[J]. China Basic Science, 2004,6(5): 3-10. | |
[14] | 董毅峰, 王彦良, 韩佶 ,等. 电力系统高效电磁暂态仿真技术综述[J]. 中国电机工程学报, 2018,38(8): 2213-2231,2532. |
DONG Y F , WANG Y L , HAN J ,et al. Review of high efficiency digital electromagnetic transient simulation technology in power system[J]. Proceedings of the CSEE, 2018,38(8): 2213-2231,2532. | |
[15] | 汪湲, 牟宏, 刘晓明 ,等. 电力系统全过程动态仿真技术综述[J]. 山东电力技术, 2017,44(12): 23-27. |
WANG Y , MU H , LIU X M ,et al. Overview of power system full dynamic simulation technology[J]. Shandong Electric Power, 2017,44(12): 23-27. | |
[16] | 周毅, 周良才, 沈颖平 . 基于数字孪生的华东电网安控系统虚拟建模及实现[J]. 电器与能效管理技术, 2021(6): 47-51. |
ZHOU Y , ZHOU L C , SHEN Y P . Modeling and implementation of east China power grid security and stability control system based on digital twin[J]. Electrical & Energy Management Technology, 2021(6): 47-51. | |
[17] | 余欣蓉 . 多虚拟电厂博弈的区域电网调度策略[D]. 昆明:昆明理工大学, 2020. |
YU X R . Regional power grid dispatching strategy based on game of multiple virtual power plants[D]. Kunming:Kunming University of Science and Technology, 2020. | |
[18] | 罗怡婷, 邢建春, 杨启亮 ,等. 基于虚拟同步发电机的防护工程柴储微电网并联运行控制[J]. 防护工程, 2021,43(5): 60-67. |
LUO Y T , XING J C , YANG Q L ,et al. Parallel operation control of diesel-storage microgrid based on virtual synchronous generator in protective engineering[J]. Protective Engineering, 2021,43(5): 60-67. | |
[19] | NAVAL N , YUSTA J M . Virtual power plant models and electricity markets - a review[J]. Renewable and Sustainable Energy Reviews, 2021,149:111393. |
[20] | DIONISIO J D N , BURNS W G , GILBERT R . 3D Virtual worlds and the metaverse[J]. ACM Computing Surveys, 2013,45(3): 1-38. |
[21] | NEVELSTEEN K J L . Virtual world,defined from a technological perspective and applied to video games,mixed reality,and the metaverse[J]. Computer Animation and Virtual Worlds, 2018,29(1): e1752. |
[22] | KANEMATSU H , FUKUMURA Y , OGAWA N ,et al. Practice and evaluation of problem based learningin metaverse[C]// Proceedings of the EdMedia + Innovate Learning.[S.l.]: Association for the Advancement of Computing in Education, 2009: 2862-2870. |
[23] | COLLINS C . Looking to the future:higher education in the metaverse[J]. EDUCAUSE Review, 2008,43(5): 50-52. |
[24] | AYITER E . Integrative art education in a metaverse:ground[J]. Technoetic Arts, 2008,6(1): 41-53. |
[25] | BOURLAKIS M , PAPAGIANNIDIS S , LI F . Retail spatial evolution:paving the way from traditional to metaverse retailing[J]. Electronic Commerce Research, 2009,9(1): 135-148. |
[26] | CAGNINA M R , POIAN M . How to compete in the metaverse:the business models in second life[J]. SSRN Electronic Journal, 2008. |
[27] | GLAESSGEN E , STARGEL D . The digital twin paradigm for future NASA and US air force vehicles[C]// Proceedings of 53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA. Reston:AIAA, 2012:1818. |
[28] | SONI R , BHATIA M , SINGH T . Digital twin:intersection of mind and machine[J]. International Journal of Computational Intelligence and IoT, 2019,2(3): 667-670. |
[29] | SCHLEICH B , ANWER N , MATHIEU L ,et al. Shaping the digital twin for design and production engineering[J]. CIRP Annals, 2017,66(1): 141-144. |
[30] | HE R , CHEN G M , DONG C ,et al. Data-driven digital twin technology for optimized control in process systems[J]. ISA Transactions, 2019,95: 221-234. |
[31] | 刘大同, 郭凯, 王本宽 ,等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018,39(11): 1-10. |
LIU D T , GUO K , WANG B K ,et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument, 2018,39(11): 1-10. | |
[32] | DALSTAM A , ENGBERG M , N?FORS D ,et al. A stepwise implementation of the virtual factory in manufacturing industry[C]// Proceedings of 2018 Winter Simulation Conference (WSC). Piscataway:IEEE Press, 2018: 3229-3240. |
[33] | TAO F , CHENG Y , ZHANG L ,et al. Advanced manufacturing systems:socialization characteristics and trends[J]. Journal of Intelligent Manufacturing, 2017,28(5): 1079-1094. |
[34] | MALOZEMOV A A , BONDAR V N , EGOROV V V ,et al. Digital twins technology for internal combustion engines development[C]// Proceedings of 2018 Global Smart Industry Conference (GloSIC). Piscataway:IEEE Press, 2018: 1-6. |
[35] | 吕宜生, 王飞跃, 张宇 ,等. 虚实互动的平行城市:基本框架、方法与应用[J]. 智能科学与技术学报, 2019,1(3): 311-317. |
LYU Y S , WANG F Y , ZHANG Y ,et al. Parallel cities:framework,methodology,and application[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(3): 311-317. | |
[36] | WANG F Y . Shadow systems:a new concept for nested and embedded co-simulation for intelligent systems[D]. Tucson:University of Arizona, 1994. |
[37] | WANG F Y , ZHANG J J , WANG X . Parallel intelligence:toward lifelong and eternal developmental AI and learning in cyber-physicalsocial spaces[J]. Frontiers of Computer Science, 2018,12(3): 401-405. |
[38] | LI L , LIN Y L , ZHENG N N ,et al. Parallel learning:a perspective and a framework[J]. IEEE/CAA Journal of Automatica Sinica, 2017,4(3): 389-395. |
[39] | 李力, 林懿伦, 曹东璞 ,等. 平行学习—机器学习的一个新型理论框架[J]. 自动化学报, 2017,43(1): 1-8. |
LI L , LIN Y L , CAO D P ,et al. Parallel learning—a new framework for machine learning[J]. Acta Automatica Sinica, 2017,43(1): 1-8. | |
[40] | WANG F Y . Parallel control and management for intelligent transportation systems:concepts,architectures,and applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2010,11(3): 630-638. |
[41] | 宁滨, 王飞跃, 董海荣 ,等. 基于ACP方法的城市轨道交通平行系统体系研究[J]. 交通运输系统工程与信息, 2010,10(6): 22-28. |
NING B , WANG F Y , DONG H R ,et al. Parallel systems for urban rail transportation based on ACP approach[J]. Journal of Transportation Systems Engineering and Information Technology, 2010,10(6): 22-28. | |
[42] | 吕宜生, 陈圆圆, 金峻臣 ,等. 平行交通:虚实互动的智能交通管理与控制[J]. 智能科学与技术学报, 2019,1(1): 21-33. |
LYU Y S , CHEN Y Y , JIN J C ,et al. Parallel transportation:virtual-real interaction for intelligent traffic management and control[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 21-33. | |
[43] | 陈龙, 王晓, 杨健健 ,等. 平行矿山:从数字孪生到矿山智能[J]. 自动化学报, 2021(7): 1633-1645. |
CHEN L , WANG X , YANG J J ,et al. Parallel mining operating systems:from digital twins to mining intelligence[J]. Acta Automatica Sinica, 2021(7): 1633-1645. | |
[44] | 吴宇震, 张俊, 高天露 ,等. 平行港口:智慧绿色时代下港口工业智联网新形态与体系结构[J]. 智能科学与技术学报, 2021,3(2): 218-227. |
WU Y Z , ZHANG J , GAO T L ,et al. Parallel port:new formation and system architecture of port industry Internet of minds in smart and green era[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(2): 218-227. | |
[45] | LI X S , YE P J , JIN J C ,et al. Data augmented deep behavioral cloning for urban traffic control operations under a parallel learning framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2021: 1-10. |
[46] | 刘腾, 王晓, 邢阳 ,等. 基于数字四胞胎的平行驾驶系统及应用[J]. 智能科学与技术学报, 2019,1(1): 40-51. |
LIU T , WANG X , XING Y ,et al. Research on digital quadruplets in cyber-physical-social space-based parallel driving[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 40-51. | |
[47] | ZHANG J J , WANG F Y , WANG Q ,et al. Parallel dispatch:a new paradigm of electrical power system dispatch[J]. IEEE/CAA Journal of Automatica Sinica, 2018,5(1): 311-319. |
[48] | 孟祥冰, 王蓉, 张梅 ,等. 平行感知:ACP理论在视觉SLAM技术中的应用[J]. 指挥与控制学报, 2017,3(4): 350-358. |
MENG X B , WANG R , ZHANG M ,et al. Parallel perception:an ACP-based approach to visual SLAM[J]. Journal of Command and Control, 2017,3(4): 350-358. | |
[49] | LI X S , WANG X , ZHENG X H ,et al. SADRL:merging human experience with machine intelligence via supervised assisted deep reinforcement learning[J]. Neurocomputing, 2022,467: 300-309. |
[50] | LI X S , ZHU F H , WANG F Y . Deep behavioral cloning for traffic control with virtual expert demonstration under a parallel learning framework[J]. IFAC-Papers OnLine, 2020,53(5): 176-181. |
[51] | 袁勇, 王飞跃 . 区块链技术发展现状与展望[J]. 自动化学报, 2016,42(4): 481-494. |
YUAN Y , WANG F Y . Blockchain:the state of the art and future Trends[J]. Acta Automatica Sinica, 2016,42(4): 481-494. | |
[52] | 张俊, 高文忠, 张应晨 ,等. 运行于区块链上的智能分布式电力能源系统:需求、概念、方法以及展望[J]. 自动化学报, 2017,43(9): 1544-1554. |
ZHANG J , GAO W Z , ZHANG Y C ,et al. Blockchain based intelligent distributed electrical energy systems:needs,concepts,approaches and vision[J]. Acta Automatica Sinica, 2017,43(9): 1544-1554. | |
[53] | 袁勇, 王飞跃 . 平行区块链:概念、方法与内涵解析[J]. 自动化学报, 2017,43(10): 1703-1712. |
YUAN Y , WANG F Y . Parallel blockchain:concept,methods and Issues[J]. Acta Automatica Sinica, 2017,43(10): 1703-1712. | |
[54] | 王飞跃 . 平行控制:数据驱动的计算控制方法[J]. 自动化学报, 2013,39(4): 293-302. |
WANG F Y . Parallel control:a method for data-driven and computational control[J]. Acta Automatica Sinica, 2013,39(4): 293-302. | |
[55] | 王飞跃, 魏庆来 . 智能控制:从学习控制到平行控制[J]. 控制理论与应用, 2018,35(7): 939-948. |
WANG F Y , WEI Q L . Intelligent control:from learning control to parallel control[J]. Control Theory & Applications, 2018,35(7): 939-948. | |
[56] | LI L , WANG X , WANG K F ,et al. Parallel testing of vehicle intelligence via virtual-real interaction[J]. Science Robotics, 2019,4(28): eaaw4106. |
[1] | 缪青海, 吕宜生. 元宇宙下的平行交通系统[J]. 智能科学与技术学报, 2023, 5(1): 32-40. |
[2] | 康孟珍, 孙贺全, 王秀娟, 王飞跃. 系统农业:结合农业社会经济属性的建模和控制[J]. 智能科学与技术学报, 2023, 5(1): 41-50. |
[3] | 王晓, 杨林瑶, 胡斌, 侯家琛. 平行推理:一种基于ACP方法的虚实互动的知识协同框架[J]. 智能科学与技术学报, 2023, 5(1): 69-82. |
[4] | 田永林, 陈苑文, 杨静, 王雨桐, 王晓, 缪青海, 王子然, 王飞跃. 元宇宙与平行系统:发展现状、对比及展望[J]. 智能科学与技术学报, 2023, 5(1): 121-132. |
[5] | 康孟珍, 邱文忠, 陈自富, 王猛, 许沙沙, 王秀娟, 倪爱东, 蒋玉洁, 陈世超, DEREFFYE Philippe, 王飞跃. 平行圆明园:从数字孪生园林到元宇宙智慧遗址公园[J]. 智能科学与技术学报, 2022, 4(3): 301-307. |
[6] | 郭超, 鲁越, 王晓, 易达, 王虓, 王飞跃. 人机物CPSS智能融合的平行创作架构与关键技术研究[J]. 智能科学与技术学报, 2022, 4(3): 344-354. |
[7] | 张向文, 王飞跃. 平行轮胎的基本架构与关键技术[J]. 智能科学与技术学报, 2022, 4(3): 445-457. |
[8] | 常方乐, 康孟珍, 王秀娟, 雷加强, 王飞跃. 平行智能风沙防护治理决策支持系统——塔克拉玛干沙漠公路及其防沙体系[J]. 智能科学与技术学报, 2021, 3(4): 499-506. |
[9] | 李亚玲, 杨林瑶, 葛俊, 覃缘琪, 王晓. 博弈5.0:基于平行系统和机器博弈的社会认知平行博弈[J]. 智能科学与技术学报, 2021, 3(4): 507-520. |
[10] | 王飞跃, 蒋怀光. 平行电池:智能生态化电池技术与服务体系的框架和流程[J]. 智能科学与技术学报, 2021, 3(4): 521-531. |
[11] | 王春法, 王飞跃, 鲁越, 李华飙, 郭超. 平行博物馆:新时代博物馆运营的智能管理与控制[J]. 智能科学与技术学报, 2021, 3(2): 125-136. |
[12] | 吴宇震, 张俊, 高天露, 孙玉健, 刘金旭. 平行港口:智慧绿色时代下港口工业智联网新形态与体系结构[J]. 智能科学与技术学报, 2021, 3(2): 218-227. |
[13] | 王飞跃. 平行控制与数字孪生:经典控制理论的回顾与重铸[J]. 智能科学与技术学报, 2020, 2(3): 293-300. |
[14] | 李浥东,张俊,陶耀东,王伟,顾元祥,王飞跃. 平行安全:基于CPSS的生成式对抗安全智能系统[J]. 智能科学与技术学报, 2020, 2(2): 194-202. |
[15] | 郭超,鲁越,林懿伦,卓凡,王飞跃. 平行艺术:人机协作的艺术创作[J]. 智能科学与技术学报, 2019, 1(4): 335-341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|