[1] |
HAY R J , JOHNS N E , WILLIAMS H C ,et al. The global burden of skin disease in 2010:an analysis of the prevalence and impact of skin conditions[J]. Journal of Investigative Dermatology, 2014,134(6): 1527-1534.
|
[2] |
BINDER M , SCHWARZ M , WINKLER A ,et al. Epiluminescence microscopy:a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists[J]. Archives of Dermatology, 1995,131(3): 286-291.
|
[3] |
BALLERINI L , FISHER R B , ALDRIDGE B ,et al. A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions[J]. Color Medical Image Analysis, 2013,10(4): 63-86.
|
[4] |
SCHAEFER G , KRAWCZYK B , CELEBI M E ,et al. An ensemble classification approach for melanoma diagnosis[J]. Memetic Computing, 2014,6(4): 233-240.
|
[5] |
CELEBI M E , KINGRAVI H A , UDDIN B ,et al. A methodological approach to the classification of dermoscopy images[J]. Computerized Medical Imaging and Graphics, 2007,31(6): 362-373.
|
[6] |
SUMITHRA R , SUHIL M , GURU D S . Segmentation and classification of skin lesions for disease diagnosis[J]. Procedia Computer Science, 2015,45: 76-85.
|
[7] |
崔文成, 张鹏霞, 邵虹 . 基于深度可分离卷积网络的皮肤镜图像病灶分割方法[J]. 智能科学与技术学报, 2020,2(4): 385-393.
|
|
CUI W C , ZHANG P X , SHAO H . Dermoscopic image lesion segmentation method based on deep separable convolutional network[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(4): 385-393.
|
[8] |
CODELLA N , CAI J J , ABEDINI M ,et al. Deep learning,sparse coding,and SVM for melanoma recognition in dermoscopy images[C]// Proceedings of the 6th International Workshop on Machine Learning in Medical Imaging.[S.l.:s.n.], 2015: 118-126.
|
[9] |
KAWAHARA J , BEN TAIEB A , HAMARNEH G . Deep features to classify skin lesions[C]// Proceedings of 2016 IEEE 13th International Symposium on Biomedical Imaging. Piscataway:IEEE Press, 2016: 1397-1400.
|
[10] |
POMPONIU V , NEJATI H , CHEUNG N M . Deepmole:deep neural networks for skin mole lesion classification[C]// Proceedings of the 23rd IEEE International Conference on Image Processing. Piscataway:IEEE Press, 2016: 2623-2627.
|
[11] |
ESTEVA A , KUPREL B , NOVOA R A ,et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017,542(7639): 115-11811.
|
[12] |
李航, 余镇, 倪东 ,等. 基于深度残差网络的皮肤镜图像黑色素瘤的识别[J]. 中国生物医学工程学报, 2018,37(3): 274-282.
|
|
LI H , YU Z , NI D ,et al. Identification of melanoma using dermoscopic images based on deep residual networks[J]. Chinese Journal of Biomedical Engineering, 2018,37(3): 274-282.
|
[13] |
田敏 . 基于迁移学习的医学文献内图像多标签分类[D]. 武汉:武汉大学, 2019.
|
|
TIAN M . Image multi label classification within medical literature based on migration learning[D]. Wuhan:Wuhan University, 2019.
|
[14] |
HE K M , ZHANG X Y , REN S Q ,et al. Deep residual learning for image recognition[C]// Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016.
|