[1] |
BERNERS-LEE T , HENDLER J , LASSILA O . The semantic Web[J]. Scientific American, 2001,284(5): 34-43.
|
[2] |
VRANDE?I? D KR?TZSCH M . Wikidata[J]. Communications of the ACM, 2014,57(10): 78-85.
|
[3] |
AUER S , BIZER C , KOBILAROV G ,et al. DBpedia:a nucleus for a web of open data[M]. The semantic Web. Heidelberg: Springer, 2007.
|
[4] |
MITCHELL T , COHEN W , HRUSCHKA E ,et al. Never-ending learning[J]. Communications of the ACM, 2018,61(5): 103-115.
|
[5] |
XIONG W H , DU J F , WANG W Y ,et al. Pretrained encyclopedia:weakly supervised knowledge-pretrained language model[C]// Proceedings of the International Conference on Learning Representations.[S.l.:s.n.], 2019.
|
[6] |
YASUNAGA M , REN H Y , BOSSELUT A ,et al. QA-GNN:reasoning with language models and knowledge graphs for question answering[C]// Proceedings of 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg:Association for Computational Linguistics, 2021: 535-546.
|
[7] |
ZHANG Q , ZHANG L , QIN C ,et al. A survey on knowledge graph-based recommender systems[J]. Scientia Sinica Informationis, 2020,50(7): 937-956.
|
[8] |
DEVLIN J , CHANG M W , LEE K ,et al. BERT:pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint, 2018,arXiv:1810.04805.
|
[9] |
WANG X Z , GAO T Y , ZHU Z C ,et al. KEPLER:a unified model for knowledge embedding and pre-trained language representation[J]. Transactions of the Association for Computational Linguistics, 2021,9: 176-194.
|
[10] |
CHEN H J , HU N , QI G L ,et al. OpenKG chain:a blockchain infrastructure for open knowledge graphs[J]. Data Intelligence, 2021: 1-18.
|
[11] |
BORDES A , USUNIER N , GARCIA-DURAN A , ,et al. Translating embeddings for modeling multi-relational data[J]. Advances in Neural Information Processing Systems, 2013,26.
|
[12] |
WANG Z , ZHANG J W , FENG J L ,et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.:s.n.], 2014.
|
[13] |
ZHOU X H , YI Y H , JIA G . Path-RotatE:knowledge graph embedding by relational rotation of path in complex space[C]// Proceedings of 2021 IEEE/CIC International Conference on Communications in China. Piscataway:IEEE Press, 2021: 905-910.
|
[14] |
NICKEL M , TRESP V , KRIEGEL H . A three-way model for collective learning on multi-relational data[C]// Proceedings of the 28th International Conference on International Conference on Machine Learning.[S.l.:s.n.], 2011: 809-816.
|
[15] |
YANG B S , YIH W T , HE X D ,et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv preprint, 2014,arXiv:1412.6575.
|
[16] |
TROUILLON T , WELBL J , Riedel S R ,et al. Complex embeddings for simple link prediction[C]// Proceedings of the International Conference on Machine Learning.[S.l.:s.n.], 2016: 2071-2080.
|
[17] |
TERU K , DENIS E , HAMILTON W . Inductive relation prediction by subgraph reasoning[C]// Proceedings of the International Conference on Machine Learning.[S.l.:s.n.], 2020: 9448-9457.
|
[18] |
MAI S J , ZHENG S J , YANG Y D ,et al. Communicative message passing for inductive relation reasoning[J]. arXiv preprint, 2020,arXiv:2012.08911.
|
[19] |
CHEN J J , HE H R , WU F ,et al. Topology-aware correlations between relations for inductive link prediction in knowledge graphs[C]// Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.:s.n.], 2021: 6271-6278.
|
[20] |
GALáRRAGA L A , TEFLIOUDI C , HOSE K ,et al. AMIE:association rule mining under incomplete evidence in ontological knowledge bases[C]// Proceedings of the 22nd International Conference on World Wide Web.[S.l.:s.n.], 2013: 413-422.
|
[21] |
MEILICKE C , FINK M , WANG Y J ,et al. Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion[C]// Proceedings of the International Semantic Web Conference.[S.l.:s.n.], 2018: 3-20.
|
[22] |
YANG F , YANG Z L , COHEN W W . Differentiable learning of logical rules for knowledge base reasoning[J]. arXiv preprint, 2017,arXiv:1702.08367.
|
[23] |
SADEGHIAN A , ARMANDPOUR M , DING P ,et al. DRUM:end-to-end differentiable rule mining on knowledge graphs[J]. Advances in Neural Information Processing Systems, 2019,32: 15347-15357.
|
[24] |
MCMAHAN H B , MOORE E , RAMAGE D ,et al. Communication-efficient learning of deep networks from decentralized data[J]. arXiv preprint, 2016,arXiv:1602.05629.
|
[25] |
DETTMERS T , MINERVINI P , STENETORP P ,et al. Convolutional 2D knowledge graph embeddings[C]// Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.:s.n.], 2018.
|
[26] |
TOUTANOVA K , CHEN D Q , PANTEL P ,et al. Representing text for joint embedding of text and knowledge bases[C]// Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2015: 1499-1509.
|
[27] |
XIONG W H , HOANG T , WANG W Y . DeepPath:a reinforcement learning method for knowledge graph reasoning[C]// Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2017: 564-573.
|