[1] |
张钹 . 人工智能进入后深度学习时代[J]. 智能科学与技术学报, 2019,1(1): 4-6.
|
|
ZHANG B . Artificial intelligence is entering the post deep-learning era[J]. Chinese Journalof Intelligent Science and Technology, 2019,1(1): 4-6.
|
[2] |
于璠 . 新一代深度学习框架研究[J]. 大数据, 2020,6(4): 69-80.
|
|
YU F . Research on the next-generation deep learning framework[J]. Big Data Research, 2020,6(4): 69-80.
|
[3] |
BROOMHEAD D S , LOWE D . Radial basis functions,multi-variable functional interpolation and adaptive networks[R]. 1988.
|
[4] |
KOHONEN T . Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics, 1982,43(1): 59-69.
|
[5] |
ELMAN J L . Finding structure in time[J]. Cognitive Science, 1990,14(2): 179-211.
|
[6] |
ACKLEY D H , HINTON G E , SEJNOWSKI T J . A learning algorithm for boltzmann machines[J]. Cognitive Science, 1985,9(1): 147-169.
|
[7] |
HINTON G E , OSINDERO S , TEH Y W . A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18(7): 1527-1554.
|
[8] |
YANN L , YOSHUA B . Convolutional networks for images,speech,and time-series[J]. The Handbook of Brain Theory and Neural Networks, 1995: 255-258.
|
[9] |
黄宜华 . 大数据机器学习系统研究进展[J]. 大数据, 2015,1(1): 35-54.
|
|
HUANG Y H . Research progress on big data machine learning sys-tem[J]. Big Data Research, 2015,1(1): 35-54.
|
[10] |
郑南宁 . 人工智能新时代[J]. 智能科学与技术学报, 2019,1(1): 1-3.
|
|
ZHENG N N . The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 1-3.
|
[11] |
孙长银, 穆朝絮 . 多智能体深度强化学习的若干关键科学问题[J]. 自动化学报, 2020,46(7): 1301-1312.
|
|
SUN C Y , MU C X . Important scientific problems of multi-agent deep reinforcement learning[J]. Acta AutomaticaSinica, 2020,46(7): 1301-1312.
|
[12] |
CHEN C L P , LIU Z L . Broad learning system:an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018,29(1): 10-24.
|
[13] |
CHEN C L P , LIU Z L , FENG S . Universal approximation capability of broad learning system and its structural variations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019,30(4): 1191-1204.
|
[14] |
郑云飞, 陈霸东 . 基于最小p-范数的宽度学习系统[J]. 模式识别与人工智能, 2019,32(1): 51-57.
|
|
ZHENG Y F , CHEN B D . Least p-norm based broad learning sys-tem[J]. Pattern Recognition and Artificial Intelligence, 2019,32(1): 51-57.
|
[15] |
YANG F , . A CNN-based broad learning system[C]// Proceedings of 2018 IEEE 4th International Conference on Computer and Communications. Piscataway:IEEE Press, 2018: 2105-2109.
|
[16] |
FENG S , CHEN C L P . Fuzzy broad learning system:a novel neuro-fuzzy model for regression and classification[J]. IEEE Transactions on Cybernetics, 2020,50(2): 414-424.
|
[17] |
李润泽, 郭黎, 李保平 ,等. 基于模糊宽度学习模型的光伏发电预测方法[J]. 控制工程, 2020,27(11): 2016-2022.
|
|
LI R Z , GUO L , LI B P ,et al. A photovoltaic power prediction method based on fuzzy broad learning system[J]. Control Engineering of Chi-na, 2020,27(11): 2016-2022.
|
[18] |
XU L L , CHEN C L P , HAN R Z . Sparse Bayesian broad learning system for probabilistic estimation of prediction[J]. IEEE Access, 2020,8: 56267-56280.
|
[19] |
JIN J W , LIU Z L , CHEN C L P . Discriminative graph regularized broad learning system for image recognition[J]. Science China Information Sciences, 2018,61(11): 112209.
|
[20] |
贾晨, 刘华平, 续欣莹 ,等. 基于宽度学习方法的多模态信息融合[J]. 智能系统学报, 2019,14(1): 150-157.
|
|
JIA C , LIU H P , XU X Y ,et al. Multi-modal information fusion based on broad learning method[J]. CAAI Transactions on Intelligent Sys-tems, 2019,14(1): 150-157.
|
[21] |
褚菲, 苏嘉铭, 梁涛 ,等. 基于lasso和elastic net的宽度学习系统网络结构稀疏方法[J]. 控制理论与应用, 2020,37(12): 2543-2550.
|
|
CHU F , SU J M , LIANG T ,et al. Sparsity method for network struc-ture of broad learning system based on lasso and elastic net[J]. Control Theory & Applications, 2020,37(12): 2543-2550.
|
[22] |
YANG L , SONG S J , CHEN C L P . Transductive transfer learning based on broad learning system[C]// Proceedings of 2018 IEEE International Conference on Systems,Man,and Cybernetics (SMC). Piscataway:IEEE Press, 2018: 912-917.
|
[23] |
李旺, 俞祝良 . 宽度学习系统在蘑菇毒性判别中的应用[J]. 现代食品科技, 2019,35(7): 267-272,54.
|
|
LI W , YU Z L . Application of broad learning system in discrimination of mushroom toxicity[J]. Modern Food Science and Technology, 2019,35(7): 267-272,54.
|
[24] |
SORIA-OLIVAS E , GOMEZ-SANCHIS J , MARTIN J D ,et al. BELM:Bayesian extreme learning machine[J]. IEEE Transactions on Neural Networks, 2011,22(3): 505-509.
|
[25] |
LUO J H , VONG C M , WONG P K . Sparse Bayesian extreme learning machine for multi-classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014,25(4): 836-843.
|
[26] |
BISHOP C . Pattern recognition and machine learning[M]. New York: Springer, 2006.
|
[27] |
DIRKSE S P , FERRIS M C . A pathsearch damped Newton method for computing general equilibria[J]. Annals of Operations Research, 1996,68(2): 211-232.
|
[28] |
BANERJEE K S . Generalized inverse of matrices and its applications[J]. Technometrics, 1973,15(1): 197.
|
[29] |
KHAN M M R , ARIF R B , SIDDIQUE M Q B ,et al. Study and observation of the variation of the variation of accuracies of KNN,SVM,LMNN,ENN algorithms on eleven different datasets from UCI machine learning repository[C]// Proceedings of 2018 4th International Conference on Electrical Engineering and Information & Communication Technology.[S.l.:s.n.], 2018: 124-129.
|
[30] |
LECUN Y , HUANG F J , BOTTOU L . Learning methods for generic object recognition with invariance to pose and lighting[C]// Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2004.
|
[31] |
DEBNATH R , TAKAHIDE N , TAKAHASHI H . A decision based one-against-one method for multi-class support vector machine[J]. Pattern Analysis and Applications, 2004,7(2): 164-175.
|
[32] |
LI R , WANG X D , LEI L ,et al. Probabilities modeling of multi-class based on relevance vector machine[C]// Proceedings of 2016 12th World Congress on Intelligent Control and Automation. Piscataway:IEEE Press, 2016: 2755-2759.
|