1 |
FENG R M, ZONG Y N, CAO S M, et al. Current cancer situation in China: good or bad news from the 2018 global cancer statistics? [J]. Cancer Communications (London, England), 2019, 39(1): 22.
|
2 |
刘树范, 阚秀. 细胞病理学[M]. 北京: 中国协和医科大学出版社, 2011.
|
|
LIU S F, KAN X. Cytopathology[M]. Beijing: Peking Union Medical College Press, 2011.
|
3 |
卞修武, 平轶芳. 我国病理学科发展面临的挑战和机遇[J]. 第三军医大学学报, 2019, 41(19): 1815-1817.
|
|
BIAN X W, PING Y F. Pathology in China: challenges and opportunities[J]. Journal of Third Military Medical University, 2019, 41(19): 1815-1817.
|
4 |
王丽会, 秦永彬. 深度学习在医学影像中的研究进展及发展趋势[J]. 大数据, 2020, 6(6): 83-104.
|
|
WANG L H, QIN Y B. State of the art and future perspectives of the applications of deep learning in the medical image analysis[J]. Big Data Research, 2020, 6(6): 83-104.
|
5 |
TERAMOTO A, TSUKAMOTO T, KIRIYAMA Y, et al. Automated classification of lung cancer types from cytological images using deep convolutional neural networks[J]. BioMed Research International, 2017.
|
6 |
TERAMOTO A, YAMADA A, KIRIYAMA Y, et al. Automated classification of benign and malignant cells from lung cytological images using deep convolutional neural network[J]. Informatics in Medicine Unlocked, 2019, 16: 100205.
|
7 |
TERAMOTO A, TSUKAMOTO T, YAMADA A, et al. Deep learning approach to classification of lung cytological images: two-step training using actual and synthesized images by progressive growing of generative adversarial networks[J]. PLoS One, 2020, 15(3): e0229951.
|
8 |
ZHU H Z, ZHANG Y Y, LI M, et al. Exploring deep learning for efficient and reliable mobile sensing[J]. IEEE Network, 2018, 32(4): 6-7.
|
9 |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
|
10 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 Medical Image Computing and Computer-Assisted Intervention. [S.l.:s.n.], 2015.
|
11 |
崔文成, 张鹏霞, 邵虹. 基于深度可分离卷积网络的皮肤镜图像病灶分割方法[J]. 智能科学与技术学报, 2020, 2(4): 385-393.
|
|
CUI W C, ZHANG P X, SHAO H. Dermoscopic image lesion segmentation method based on deep separable convolutional network[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 385-393.
|
12 |
ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel 'squeeze & excitation' in fully convolutional networks[C]//Proceedings of 2018 Medical Image Computing and Computer Assisted Intervention. [S.l.:s.n.], 2018.
|
13 |
OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas[EB]. arXiv preprint, 2018, arXiv:1804.03999.
|
14 |
WANG W, YU K C, HUGONOT J, et al. Recurrent U-Net for resource-constrained segmentation[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 2142-2151.
|
15 |
CHEN W L, ZHANG Y, HE J J, et al. Prostate segmentation using 2D bridged U-Net[C]//Proceedings of 2019 International Joint Conference on Neural Networks. Piscataway: IEEE Press, 2019: 1-7.
|
16 |
ORLANDO J I, SEEB?CK P, BOGUNOVI? H, et al. U2-Net: a Bayesian U-Net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological OCT scans[C]//Proceedings of 2019 IEEE 16th International Symposium on Biomedical Imaging. Piscataway: IEEE Press, 2019: 1441-1445.
|
17 |
LI X M, CHEN H, QI X J, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674.
|
18 |
GUAN S, KHAN A A, SIKDAR S, et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2): 568-576.
|
19 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 2261-2269.
|
20 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB]. arXiv preprint,2015, arXiv:1502.03167.
|
21 |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]// Proceedings of 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1026-1034.
|
22 |
MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of 2016 4th International Conference on 3D Vision. Piscataway: IEEE Press, 2016: 565-571.
|
23 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB].arXiv preprint, 2014, arXiv:1412.6980.
|
24 |
LEVANDOWSKY M, WINTER D. Distance between sets[J]. Nature, 1971, 234(5323): 34-35.
|
25 |
DICE L R. Measures of the amount of ecologic association between species[J]. Ecology, 1945, 26(3): 297-302.
|