[1] |
SHLESINGER M F . Complex adaptive systems:an introduction to computational models of social life[J]. Journal of Statistical Physics, 2007,129(2): 409-410.
|
[2] |
NIAZI M . Introduction to the modeling and analysis of complex systems:a review[J]. Complex Adaptive Systems Modeling, 2016,4: 1-3.
|
[3] |
MANOJ B S , CHAKRABORTY A , SINGH R . Complex networks:a networking and signal processing perspective[M].[S.l.:s.n.], 2018.
|
[4] |
THURNER S , KLIMEK P , HANEL R . Introduction to the theory of complex systems[M]. Oxford: Oxford University Press, 2018.
|
[5] |
WANG F Y , CHEN J L . Intelligent control method and application[M].[S.l.]: China Science and Technology Press, 2020.
|
[6] |
ZHENG N N , LIU Z Y , REN P J ,et al. Hybrid-augmented intelligence:collaboration and cognition[J]. Frontiers of Information Technology & Electronic Engineering, 2017,18(2): 153-179.
|
[7] |
白昱阳, 黄彦浩, 陈思远 ,等. 云边智能:电力系统运行控制的边缘计算方法及其应用现状与展望[J]. 自动化学报, 2020,46(3): 397-410.
|
|
BAI Y Y , HUANG Y H , CHEN S Y ,et al. Cloud-edge intelligence:status quo and future prospective of edge computing approaches and applications in power system operation and control[J]. Acta Automatica Sinica, 2020,46(3): 397-410.
|
[8] |
CHEN S Y , ZHANG J , BAI Y Y ,et al. Blockchain enabled intelligence of federated systems (BELIEFS):an attack-tolerant trustable distributed intelligence paradigm[J]. Energy Reports, 2021,7: 8900-8911.
|
[9] |
HESTER T , STONE P . TEXPLORE:real-time sample-efficient reinforcement learning for robots[J]. Machine Learning, 2013,90(3): 385-429.
|
[10] |
XIONG Y H , ZHENG G J , XU K ,et al. Learning traffic signal control from demonstrations[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York:ACM Press, 2019: 2289-2292.
|
[11] |
ROSS S , GORDON G , BAGNELL D . A reduction of imitation learning and structured prediction to no-regret online learning[C]// Proceedings of the 14th International Conference on Artificial Intelligence and Statistics.[S.l.:s.n.], 2011: 627-635.
|
[12] |
HESTER T , VECERIK M , PIETQUIN O ,et al. Deep Q-learning from demonstrations[J]. arXiv preprint, 2017,arXiv:1704.03732.
|
[13] |
JING M X , MA X J , HUANG W B ,et al. Reinforcement learning from imperfect demonstrations under soft expert guidance[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020,34(4): 5109-5116.
|
[14] |
NAIR A , MCGREW B , ANDRYCHOWICZ M ,et al. Overcoming exploration in reinforcement learning with demonstrations[C]// Proceedings of 2018 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2018: 6292-6299.
|
[15] |
GAO Y , XU H Z , LIN J ,et al. Reinforcement learning from imperfect demonstrations[J]. arXiv preprint, 2018,arXiv:1802.05313.
|
[16] |
RAMíREZ J , YU W , PERRUSQUíA A , . Model-free reinforcement learning from expert demonstrations:a survey[J]. Artificial Intelligence Review, 2022,55(4): 3213-3241.
|
[17] |
KILINC O , MONTANA G . Reinforcement learning for robotic manipulation using simulated locomotion demonstrations[J]. Machine Learning, 2022,111(2): 465-486.
|
[18] |
LI X S , WANG X , ZHENG X H ,et al. SADRL:merging human experience with machine intelligence via supervised assisted deep reinforcement learning[J]. Neurocomputing, 2022,467: 300-309.
|
[19] |
LI X S , WANG X , ZHENG X H ,et al. Supervised assisted deep reinforcement learning for emergency voltage control of power systems[J]. Neurocomputing, 2022,475: 69-79.
|
[20] |
XU P D , PEI Y Z , ZHENG X H ,et al. A simulation-constraint graph reinforcement learning method for line flow control[C]// Proceedings of 2020 IEEE 4th Conference on Energy Internet and Energy System Integration. Piscataway:IEEE Press, 2020: 319-324.
|
[21] |
XU P D , DUAN J J , ZHANG J ,et al. Active power correction strategies based on deep reinforcement learning—part I:a simulation-driven solution for robustness[J]. CSEE Journal of Power and Energy Systems, 2022,8(4): 1122-1133.
|
[22] |
PEARL J , MACKENZIE D . The book of why:the new science of cause and effect[M].[S.l.:s.n.], 2018.
|
[23] |
HEINDORF S , SCHOLTEN Y , WACHSMUTH H ,et al. CauseNet:towards a causality graph extracted from the web[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York:ACM Press, 2020: 3023-3030.
|
[24] |
SPEER R , CHIN J , HAVASI C . ConceptNet 5.5:an open multilingual graph of general knowledge[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence.[S.l.:s.n.], 2017: 4444-4451.
|
[25] |
JAIMINI U , SHETH A . CausalKG:causal knowledge graph explainability using interventional and counterfactual reasoning[J]. IEEE Internet Computing, 2022,26(1): 43-50.
|
[26] |
PEARL J . Causality[M]. Cambridge: Cambridge University Press, 2009.
|
[27] |
VIALE R . Causal cognition and causal realism[J]. International Studies in the Philosophy of Science, 1999,13(2): 151-167.
|
[28] |
TENENBAUM J B , KEMP C , GRIFFITHS T L ,et al. How to grow a mind:statistics,structure,and abstraction[J]. Science, 2011,331(6022): 1279-1285.
|
[29] |
MARCUS G , DAVIS E . Rebooting AI:building artificial intelligence we can trust[M].[S.l.:s.n.], 2019.
|
[30] |
BAREINBOIM E , BRITO C , PEARL J . Local characterizations of causal Bayesian networks[M]// Graph structures for knowledge representation and reasoning. Heidelberg: Springer, 2012: 1-17.
|
[31] |
SHPITSER I , SHERMAN E . Identification of personalized effects associated with causal pathways[J]. Uncertainty in Artificial Intelligence, 2018:198.
|
[32] |
BLOMQVIST E , ALIREZAIE M , SANTINI M . Towards causal knowledge graphs - position paper[C]// Proceedings of the Knowledge Discovery in Healthcare Data.[S.l.:s.n.], 2020.
|
[33] |
ZHANG K , XU P D , ZHANG J . Explainable AI in deep reinforcement learning models:a SHAP method applied in power system emergency control[C]// Proceedings of 2020 IEEE 4th Conference on Energy Internet and Energy System Integration. Piscataway:IEEE Press, 2020: 711-716.
|
[34] |
ZHANG K , XU P D , GAO T L ,et al. A trustworthy framework of artificial intelligence for power grid dispatching systems[C]// Proceedings of 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence. Piscataway:IEEE Press, 2021: 418-421.
|
[35] |
ZHANG K , ZHANG J , XU P D ,et al. Explainable AI in deep reinforcement learning models for power system emergency control[J]. IEEE Transactions on Computational Social Systems, 2022,9(2): 419-427.
|
[36] |
DAI Y X , CHEN Q M , ZHANG J ,et al. Enhanced oblique decision tree enabled policy extraction for deep reinforcement learning in power system emergency control[J]. Electric Power Systems Research, 2022,209:107932.
|
[37] |
李金星, 李湘, 高天露 ,等. 基于电网多元信息知识图谱的故障处置研究及应用[J]. 电力信息与通信技术, 2021,19(11): 30-38.
|
|
LI J X , LI X , GAO T L ,et al. Research and application of fault handling based on power grid multivariate information knowledge graph[J]. Electric Power Information and Communication Technology, 2021,19(11): 30-38.
|
[38] |
戴宇欣, 陈琪美, 高天露 ,等. 基于加权倾斜决策树的电力系统深度强化学习控制策略提取[J]. 电力信息与通信技术, 2021,19(11): 17-23.
|
|
DAI Y X , CHEN Q M , GAO T L ,et al. Deep reinforcement learning control policy extraction based on weighted oblique decision tree[J]. Electric Power Information and Communication Technology, 2021,19(11): 17-23.
|