大数据 ›› 2017, Vol. 3 ›› Issue (6): 55-64.doi: 10.11959/j.issn.2096-0271.2017061

• 专题:工业大数据 • 上一篇    下一篇

一种情感判别分析体系在汽车品牌舆情管理中的应用

宋云生   

  1. 深圳联友科技有限公司,广东 深圳 518031
  • 出版日期:2017-11-20 发布日期:2017-12-08
  • 作者简介:宋云生(1985-),男,深圳联友科技有限公司数据挖掘工程师,主要研究方向为自然语言理解及深度学习。

Application of an emotion discriminant analysis system in the management of automobile brand

Yunsheng SONG   

  1. Shenzhen Lan-You Technology Co.,Ltd.,Shenzhen 518031,China
  • Online:2017-11-20 Published:2017-12-08

摘要:

品牌舆情管理涉及文本、语音等自然语言产物的处理,如挖掘文本内涵的情感、观点等并对其量化,才能进一步分析品牌所处的舆论环境。对自然语言中情感的量化即情感判别分析,针对传统的基于词典的情感分析和基于监督模型的情感分析存在的不足,提出了一种新的情感分析系统,并结合朴素贝叶斯分类算法,提高了情感分析的准确率,并增强了量化分析情感强度的能力。经测试,提出的文本情感分析引擎的情感判别准确率高于常见的分析方法,且不具有非常明显的行业特异性。

关键词: 情感分析, 监督模型, 朴素贝叶斯, 自然语言处理

Abstract:

Brand public opinion management involves text,voice and other natural language processing,such as mining the emotions and views of the text and quantifies it.The quantification of emotion in natural language is the emotion discriminant analysis.Considering the disadvantage in the traditional sentiment analysis that based on emotional dictionary and supervision model based sentiment analysis system,a new sentiment analysis system was proposed,and combined with the Naive Bayesian classification algorithm,the accuracy of sentiment analysis was improved,and the ability of quantitative analysis of emotional strength was enhanced.The sentiment discrimination accuracy of the proposed text sentiment analysis engine is higher than that of the common analysis method,and there is no decent of accuracy in out-ofsample texts from different industries.

Key words: sentiment analysis, supervised model, naive Bayes, natural language processing

中图分类号: 

No Suggested Reading articles found!