大数据 ›› 2019, Vol. 5 ›› Issue (1): 39-67.doi: 10.11959/j.issn.2096-0271.2019004
韩冬1,李其花2,蔡巍3,夏雨薇2,宁佳1,黄峰1
出版日期:
2019-01-01
发布日期:
2019-02-01
作者简介:
韩冬(1983- ),男,博士,沈阳东软医疗系统有限公司人工智能中心算法研发负责人,主要研究方向为人工智能、图像处理、计算机视觉等。|李其花(1987- ),女,慧影医疗科技(北京)有限公司合作科学家,主要研究方向为医学人工智能。|蔡巍(1982- ),男,东软集团股份有限公司先行产品研发事业部人工智能专家,东软智能医疗研究院研究员,东软智能医疗研究云平台研发负责人,主要研究方向为人工智能、复杂系统与复杂网络、类脑计算、自然语言处理。|夏雨薇(1993- ),女,慧影医疗科技(北京)有限公司合作科学家,主要研究方向为计算机视觉。|宁佳(1991- ),女,博士,沈阳东软医疗系统有限公司磁共振研发中心算法工程师,主要研究方向为磁共振快速和定量成像、非笛卡儿成像等。|黄峰(1973- ),男,博士,曾任飞利浦医疗主任研究员和临床应用总监,现任沈阳东软医疗系统有限公司人工智能中心首席科学家兼中心主任、磁共振首席科学家兼卓越临床总监。中国医学装备协会人工智能联盟理事、影像装备人工智能联盟企业副主任委员。发表国际核心期刊文章43篇,发表会议论文超过200篇;申请的国内国际专利已公布40余项。担任13种期刊的审稿人,曾任 IEEE transaction on Biomedical Engineering 的副主编和《中国医学装备》编委,作为主要负责人获得国家“十三五”和上海市基金累计超过2 000万元。数十次在国际会议上口头汇报或受邀演讲。多项研究成果已经广泛应用于工业界。
基金资助:
Dong HAN1,Qihua LI2,Wei CAI3,Yuwei XIA2,Jia NING1,Feng HUANG1
Online:
2019-01-01
Published:
2019-02-01
Supported by:
摘要:
近年来,人工智能成为学术界和工业界的研究热点,并已经成功应用于医疗健康等领域。着重介绍了人工智能在医学影像领域最新的研究与应用进展,包括智能成像设备、智能图像处理与分析、影像组学、医学影像与自然语言处理的结合等前沿方向。分析了研究和发展从源头入手的全链条人工智能技术的重要性和可行性,阐述了学术界和工业界在这一重要方向上的创新性工作。同时指出,人工智能在医学影像领域中的研究尚处于起步阶段,人工智能与医学影像的结合将成为国际上长期的研究热点。
中图分类号:
韩冬, 李其花, 蔡巍, 夏雨薇, 宁佳, 黄峰. 人工智能在医学影像中的研究与应用[J]. 大数据, 2019, 5(1): 39-67.
Dong HAN, Qihua LI, Wei CAI, Yuwei XIA, Jia NING, Feng HUANG. Research and application of artificial intelligence in medical imaging[J]. Big Data Research, 2019, 5(1): 39-67.
[1] | MARDANI M , GONG E , CHENG J Y , et al. Deep generative adversarial neural networks for compressive sensing (GANCS) MRI[J]. IEEE Transactions on Medical Imaging,Accepted. |
[2] | SCHLEMPER J , CABALLERO J , HAJNAL J V , et al. A deep cascade of convolutional neural networks for MR image reconstruction[C]// International Conference on Information Processing in Medical Imaging, June 25-30,2017,North Carolina, USA.Heidelberger:Springer Press, 2017:647-658. |
[3] | YANG Y , SUN J , LI H , et al. Deep ADMM-Net for compressive sensing MRI[C]// The 30th Conference on Neural Information Processing Systems, December 5-10,2016,Barcelona, Spain.Cambridge:MIT Press, 2016. |
[4] | YE J C , HAN Y , CHA E , et al. Deep convolutional framelets: a general deep learning framework for inverse problems[J]. SIAM Journal on Imaging Sciences, 2018,11(2): 991-1048. |
[5] | CHEN M , WANG Y , SUN A , et al. Advantages of joint multi-echo MRI reconstruction via deep learning[C]// ISMRM Workshop on Machine Learning Part II, October 25-28,2018,Washington, USA.Hoboken:Wiley Press, 2018. |
[6] | RONNEBERGER O , FISCHER P , BROX T . U-Net: convolutional networks for biomedical image segmentation[C]// Medical Image Computing and ComputerAssisted Intervention (MICCAI), October 5-9,2015,Munich, Germany.Heidelberger:Springer, 2015:234-241. |
[7] | EO T , JUN Y , KIM T , et al. KIKInet: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images[J]. Magnetic Resonance in Medicine, 2018,80(5): 2188-2201. |
[8] | CHEN H , ZHANG Y , KALRA M K , et al. Low-dose CT with a residual encoderdecoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017,36(12): 2524-2535. |
[9] | WOLTERINK J M , LEINER T , VIERGEVER M A , et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Transactions on Medical Imaging, 2017,36(12): 2536-2545. |
[10] | HAN Y , YE J C . Framing u-net via deep convolutional framelets: application to sparse-view CT[J]. IEEE Transactions on Medical Imaging, 2018,37(6): 1418-1429. |
[11] | ANIRUDH R , KIM H , THIAGARAJAN J J . Lose the views: limited angle CT reconstruction via implicit sinogram completion[C]// IEEE Conference on Computer Vision and Pattern Recognition(CVPR), June 18-22,2018,Salt Lake City, USA.Piscataway:IEEE Press, 2018:6343-6352. |
[12] | XU J , GONG E , PAULY J . 200x low-dose PET reconstruction using deep learning[C]// NIPS Workshop on Machine Learning for Health, December 8,2017,Long Beach, USA.Cambridge:MIT Press, 2017. |
[13] | HAN L , JU G , MEI L . Multitask DNN for liver imaging enhancement[C]// ISMRM Workshop on Machine Learning Part II, October 25-28,2018,Washington, DC, USA.Hoboken:Wiley Press, 2018. |
[14] | KELM B M , WELS M , ZHOU S K , et al. Spine detection in CT and MR using iterated marginal space learning[J]. Medical Image Analysis, 2013,17(8): 1283-1292. |
[15] | GHESU F C , GEORGESCU B , MANSI T , et al. An artificial agent for anatomical landmark detection in medical images[C]// Medical Image Computing and ComputerAssisted Intervention (MICCAI), October 17-21,2016,Athens, Greece.Heidelberger:Springer, 2016:229-237. |
[16] | ZHANG P , WANG F , ZHENG Y , et al. Self supervised deep representation learning for fine-grained body part recognition[C]// IEEE 14th International Symposium on Biomedical Imaging, April 18-21,2017,Melbourne, Australia.Piscataway:IEEE Press, 2017:578-582. |
[17] | ZOU D , GUO N , WANG J , et al. Automatic FOV positioning of brain MRI using 2D scout images[C]// ISMRM Workshop on Machine Learning Part II, October 25-28,2018,Washington, DC, USA.Hoboken:Wiley Press, 2018. |
[18] | LAMBIN P , RIOS-VELAZQUEZET E , LEIJENAAR R , et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. European Journal of Cancer, 2012,48(4): 441-446. |
[19] | KUMARV , GU Y H , BASU S , et al. Radiomics: the process and the challenges[J]. Magnetic Resonance Imaging, 2012,30(9): 1234-1248. |
[20] | YAERTSOU H J , VELAZQUEZ E , LEIJENAAR R T H , et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nature Communications, 2014,5(1): 4006. |
[21] | VALLIERES M , FREEMAN C R , SKAMENE S R , et al. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities[J]. Physics in Medicine and Biology, 2015,60(14): 5471-5496. |
[22] | GUTMAN D A , COOPER L A , HWANG S N , et al. MRI predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set[J]. Radiology, 2013,267(2): 560-569. |
[23] | HUANGS Y , FRANC B L , HARNISH R J , et al. Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis[J]. NPJ Breast Cancer, 2018(4): 24. |
[24] | LI K , SUN H Z , LU Z M , et al. Value of [(18) F]FDG PET radiomic features and VEGF expression in predicting pelvic lymphatic metastasis and their potential relationship in early-stage cervical squamous cell carcinoma[J]. European Journal of Radiology, 2018,106: 160-166. |
[25] | SAH B R , OWCZARCZYK K , SIDDIQUE M , et al. Radiomics in esophageal and gastric cancer[J]. Abdom Radiol (NY), 2018. |
[26] | KAMILA N , REITER J G , BRACHTEL E , et al. Origins of lymphatic and distant metastases in human colorectal cancer[J]. Science, 2017,357(6346): 55-60. |
[27] | ZHAOB S , TAN Y Q , TSAI W Y , et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging[J]. Scientific Reports, 2016(6): 23428. |
[28] | SHROUT P , FLEISS J L . Intraclass correlations: uses in assessing rater reliability[J]. Psychological Bullein, 1979,86(2): 420-428. |
[29] | LIN H S , CHEN Y J , LU H L , et al. Test–retest reliability of mandibular morphology measurements on cone-beam computed tomography-synthesized cephalograms with random head positioning errors[J]. BiomedEng Online, 2017. |
[30] | YANG J Z , ZHANG L F , FAVE X J , et al. Uncertainty analysis of quantitative imaging features extracted from contrast-enhanced CT in lung tumors[J]. Computerized Medical Imaging and Graphics, 2016,48(1): 1-8. |
[31] | PARMAR C , LEIJENAAR R T H , GROSSMANN P , et al. Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck Cancer[J]. Scientific Reports, 2015,5: 11044. |
[32] | SHU J , TANG Y Q , CUI J J , et al. Clear cell renal cell carcinoma CT-based radiomics features for the prediction of fuhrman grade[J]. European Journal of Radiology, 2018(109): 8-12. |
[33] | ZHANG Y , ZHU Y , SHI X , et al. Soft tissue sarcomas: preoperative predictive histopathological grading based on radiomics of MRI[J]. Academic Radiology, 2018. |
[34] | FENG D Y , ZHOU Y Q , XING Y F , et al. Selection of glucocorticoid-sensitive patients in interstitial lung disease secondary to connective tissue diseases population by radiomics[J]. Therapeutics and Clinical Risk Management, 2018,14: 1975-1986. |
[35] | CUI Y , THA K K , TERASAKA S , et al. Prognostic imaging biomarkers in GBM:development and validation on the basis of multiregion and quantitative analysis of MRI[J]. Radiology, 2016,278(2): 546-553. |
[36] | HUANG Y Q , LIANG C H , HE L , et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. Journal of Clinical Oncology, 2016,34(18): 2157-2164. |
[37] | LAMBIN P , LEIJENAAR R T H , DEIST T M , et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nature Reviews Clinical Oncology, 2017,14(12): 749-762. |
[38] | ZHANG B , TIAN J , DONG D , et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma[J]. Clinical Cancer Research, 2017,23(15): 4259-4269. |
[39] | HUANG Y Q , LIU Z , HE L , et al. Radiomics signature: a potential biomarker for the prediction of disease-free survival in Early-Stage (I or II) NSCLC[J]. Radiology, 2016(3): 947-957. |
[40] | WANG J , LIU X , DONG D , et al. Prediction of malignant and benign of lung tumor using a quantitative radiomic method[C]// The 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August 16-20,2016,Orlando, USA.Piscataway:IEEE Press, 2016:1272-1275. |
[41] | WEI K , SU H , ZHOU G , et al. Potential application of radiomics for differentiating solitary pulmonary nodules[J]. OMICS J Radiol, 2016,5(2). |
[42] | ZHOU Y , HE L , HUANG Y Q , et al. CTbased radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma[J]. Abdominal Radiology, 2017,42(6): 1695-1704. |
[43] | LIANG C S , HUANG Y Q , HE L , et al. The development and validation of a CT-based radiomics signature for the preoperative[J]. Oncotarget, 2016,7(21): 31401-31412. |
[44] | GIESEL F L , SCHNEIDER F , KRATOCHWIL C , et al. Correlation between SUVmax and CT radiomic analysis using lymph node density in PET/CT-based lymph node staging[J]. Journal of Nuclear Medicine, 2017,58(2): 282-287. |
[45] | HEBERT A V , HARINI V , MAURA M , et al. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome[J]. European Radiology, 2017,27(9): 3991-4001. |
[46] | YAMASHITA K , HIWATASHI A , TOGAO O , et al. MR imaging-based analysis of glioblastoma multiforme: estimation of IDH1 mutation status[J]. American Journal of Neuroradiology, 2016,37(1): 58-65. |
[47] | STOYANOVA R , TAKHAR M , TSCHUDI Y , et al. Prostate cancer radiomics and the promise of radiogenomics[J]. Translational Cancer Research, 2016,5(4): 432-447. |
[48] | CAMERON A , KHALVATI F , HAIDER MA , et al. MAPS a quantitative radiomics approach for prostate cancer detection[J]. IEEE Transactions on Biomedical Engineering, 2016,63(6): 1145-1156. |
[49] | BRAMAN N M , ETESAMI M , PRASANNAP , et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J]. Breast Cancer Research, 2017,19(1): 57. |
[50] | FARBER N J , WU Y , ZOU L , et al. Challenges in RCC imaging renal insufficiency, post-operative surveillance, and the role of radiomics[J]. Journal of Kidney Cancer, 2015,13(4): 84-90. |
[51] | LITJENS G , KOOI T , BEJNORDI B E , et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017,42(9): 60-88. |
[52] | SUTSKEVER I , MARTENS J , HINTON G E , et al. Generating text with recurrent neural networks[C]// The 28th International Conference on Machine Learning, June 28-July 2,2011,Bellevue, USA[S.l.:s.n.], 2011:1017-1024. |
[53] | KARPATHY A , LI F F . Deep visualsemantic alignments for generating image descriptions[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12,2015,Boston, USA.Piscataway:IEEE Press, 2015:3128-3137. |
[54] | KALLENBERG M , PETERSEN K , NIELSEN M , et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring[J]. IEEE Transactions on Medical Imaging, 2016,35(5): 1322-1331. |
[55] | ACKLEY D H , HINTON G E , SEJNOWSKI T J . A learning algorithm for boltzmann machines[M]// Connectionist models and their implications: readings from cognitive science, New York: Ablex Publishing Corp, 1988. |
[56] | MCCLELLAND J . Information processing in dynamical systems: foundations of harmony theory[M]// Parallel distributed processing: explorations in the microstructure of cognition: foundations, Cambridge: MIT Press, 1986. |
[57] | GOODFELLOW I J , POUGET-ABADIE J , MIRZA M , et al. Generative adversarial nets[C]// The 27th International Conference on Neural Information Processing Systems, December 8-13,2014,Montreal, Canada.Cambridge:MIT Press, 2014:2672-2680. |
[58] | LO S C B , LOU S L A , LIN J S , et al. Artificial convolution neural network techniques and applications for lung nodule detection[J]. IEEE Transactions on Medical Imaging, 1995,14(4): 711-718. |
[59] | RAJKOMAR A , LINGAM S , TAYLOR A G , et al. High-throughput classification of radiographs using deep convolutional neural networks[J]. Journal of Digital Imaging, 2017,30(1): 95-101. |
[60] | SZEGEDY C , LIU W , JIA Y , et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12,2015,Boston, USA.Piscataway:IEEE Press, 2015. |
[61] | RAJPURKAR P , IRVIN J , ZHU K , et al. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning[J]. ScienceOpen, 2017. |
[62] | HUANG G , LIU Z , MAATEN L V D , et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26,2017,Honolulu, USA.Piscataway:IEEE Press, 2017. |
[63] | WANG X , PENG Y , LU L , et al. ChestXRay8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26,2017,Honolulu, USA.Piscataway:IEEE Press, 2017. |
[64] | LI Z , WANG C , HAN M , et al. Thoracic disease identification and localization with limited supervision[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 18-22,2018,Salt Lake City, USA.Piscataway:IEEE Press, 2018:8290-8299. |
[65] | SHEN W , ZHOU M , YANG F , et al. Multiscale convolutional neural networks for lung nodule classification[J]. Information Processing in Medical Imaging, 2015,24: 588-599. |
[66] | ESTEVA A , KUPREL B , NOVOA R A , et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017,542(7639): 115-118. |
[67] | PRATT H , COENEN F , BROADBENT D M , et al. Convolutional neural networks for diabetic retinopathy[J]. Procedia Computer Science, 2016,90: 200-205. |
[68] | SUK H I , WEE C Y , LEE S W , et al. Statespace model with deep learning for functional dynamics estimation in resting-state fMRI[J]. Neuroimage, 2016,129: 292-307. |
[69] | SHIN H C , ROTH H R , GAO M , et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016,35(5): 1285-1298. |
[70] | BECKER A S , MARCON M , GHAFOOR S , et al. Deep learning in mammography:diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer[J]. Investigative Radiology, 2017,52(7): 434. |
[71] | WANG X , YANG W , WEINREB J , et al. Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning[J]. Scientific Reports, 2017(7): 15415. |
[72] | YAN K , WANG X , LU L , et al. DeepLesion: automated mining of largescale lesion annotations and universal lesiondetection with deep learning[J]. Medical Image Analysis, 2018,5(3). |
[73] | YAN K , BAGHERI M , SUMMERS R M , et al. 3D context enhanced region-based convolutional neural network for endto-end lesion detection[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention, September 16-20,2018,Granada, Spain.Heidelberger:Springer, 2018:511-519. |
[74] | CIRESAN D C , GIUSTI A , GAMBARDELLA L M , et al. Mitosis detection in breast cancer histology images with deep neural networks[J]. Medical Image Computing and Computer Assisted Intervention, 2013,16(Pt 2): 411-418. |
[75] | SIRINUKUNWATTANA K , RAZA S E A , TSANG Y W , et al. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images[J]. IEEE Transactions on Medical Imaging, 2016,35(5): 1196-1206. |
[76] | MOESKOPS P , VIERGEVER M A , MENDRIK A M , et al. Automatic segmentation of MR brain images with a convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2016(1): 1. |
[77] | MILLETARI F , NAVAB N , AHMADI S A , et al. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]// The 4th International Conference on 3D Vision (3DV), October 25-28,2016,Stanford, USA.Piscataway:IEEE Press, 2016. |
[78] | RONNEBERGER O , FISCHER P , BROX T . U-Net: convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention, October 5-9,2015,Munich, Germany.Heidelberger:Springer, 2015:234-241. |
[79] | STOLLENGA M F , BYEON W , LIWICKI M , et al. Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation[J]. Computer Science, 2015. |
[80] | ANDERMATT S , PEZOLD S , CATTIN P . Multi-dimensional gated recurrent units for the segmentation of biomedical 3D-data[M]// Deep Learning and Data Labeling for Medical Applications, October 17-21,2016,Athens, Greece.Heidelberger:Springer, Ablex Publishing Corp, 2016:142-151. |
[81] | SINGH V K , ROMANI S , RASHWAN H A , et al. Conditional generative adversarial and convolutional networks for X-ray breast mass segmentation and shape classification[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention, September 16-20,2018,Granada, Spain.Heidelberger:Springer, 2018:833-840. |
[82] | YANG X , KWITT R , STYNER M , et al. Quicksilver: fast predictive image registration-a deep learning approach[J]. Neuroimage, 2017,158: 378-396. |
[83] | MIAO S , WANG Z J , LIAO R , et al. A CNN regression approach for real-time 2D/3D registration[J]. IEEE Transactions on Medical Imaging, 2016,35(5): 1352-1363. |
[84] | YAN P , XU S , RASTINEHAD A R , et al. Adversarial image registration with application for MR and TRUS image fusion[J].[C]// International Workshop on Machine Learning in Medical Imaging, September 16,2018,Granada, Spain.Heidelberger:Springer, 2018:197-204. |
[85] | MAZUROWSKI M A , HABAS P A , ZURADA J M , et al. Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance[J]. Neural Networks, 2008,21(2-3): 427-436. |
[86] | SCHLEGL T , WALDSTEIN S M , VOGL W D , et al. Predicting semantic descriptions from medical images with convolutional neural networks[M]// Information processing in medical imaging, Heidelberger: Springer, 2015:437-448. |
[87] | SHIN H C , LU L , KIM L , et al. Interleaved text/image deep mining on a large-scale radiology database[J]. Journal of Machine Learning Research, 2016,17(1): 3729-3759. |
[88] | WANG X S , LU L , SHIN H C , et al. Unsupervised category discovery via looped deep pseudo-task optimization using a large scale radiology image database[J]. Computer Science, 2016,arXiv: 1603. 07965. |
[89] | SHIN H C , ROBERTS K , LU L , et al. Learning to read chest x-rays: recurrent neural cascade model for automated image annotation[C]// The IEEE Conference on Computer Vision and Pattern Recognition, June 27-30,2016,Las Vegas, USA.Piscataway:IEEE Press, 2016:2497-2506. |
[90] | WANG X S , PENG Y F , LU L , et al. Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weaklysupervised classification and localization of common thorax diseases[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26,2017,Honolulu, USA.Piscataway:IEEE Press, 2017:3462-3471. |
[91] | MCCLOSKY D . Any domain parsing:automatic domain adaptation for natural language parsing[D]. Providence: Brown University, 2009. |
[92] | WANG X , PENG Y , LU L , et al. ChestXRay8: Hospital-Scale Chest X-Ray Database and Benchmarks on WeaklySupervised Classification and Localization of Common Thorax Diseases[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26,2017,Honolulu, USA.Piscataway:IEEE Press, 2017:3462-3471. |
[93] | PENG Y , WANG Y , LU L , et al. NegBio:a high-performance tool for negation and uncertainty detection in radiology reports[J]. Summits on Translational Science Proceedings, 2018: 188-196. |
[94] | WANG X , PENG Y , LU L , et al. TieNet:text-image embedding network for common thorax disease classification and reporting in chest X-rays[C]// IEEE CVPR 2018, June 18-22,2018,Salt Lake City, USA.Piscataway:IEEE Press, 2018. |
[95] | YAO L , POBLENZ E , DAGUNTS D , et al. Learning to diagnose from scratch by exploiting dependencies among labels[J]. Computer Science, 2017arXiv:1710. 10501. |
[96] | RAJPURKAR P , IRVIN J , ZHU K , et al. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning[J]. Computer Science, 2017arXiv:1711. 05225. |
IGLOVIKOV V , RAKHLIN A , KALININ A , et al. Pediatric bone age assessment using deep convolutional neural networks[J]. Computer Science, 2017arXiv:1712. 05053. |
[1] | 王皓, 潘昱杉, 潘毅. 生成式人工智能大模型赋能的元宇宙生命体:前瞻和挑战[J]. 大数据, 2023, 9(3): 85-96. |
[2] | 李婧文, 李雅文. 算法应用风险与治理研究[J]. 大数据, 2023, 9(3): 140-149. |
[3] | 万小军. 智能文本生成:进展与挑战[J]. 大数据, 2023, 9(2): 99-109. |
[4] | 沈阳, 余梦珑. 元宇宙与大数据:时空智能中的数据洞察与价值连接[J]. 大数据, 2023, 9(1): 103-110. |
[5] | 肖晓霞, 刘明婷, 杨冯天赐, 刘鉴建县, 杨阳, 石月. 基于NLP的中医医案文本快速结构化方法[J]. 大数据, 2022, 8(3): 128-139. |
[6] | 赵智韬, 赵理君, 张正, 唐娉. 基于容器云技术的典型遥感智能解译算法集成[J]. 大数据, 2022, 8(2): 58-74. |
[7] | 张晓龙, 支龙, 高剑, 苗仲辰, 林越峰, 项雅丽, 熊贇. 一种半监督学习的金融新闻文本分类算法[J]. 大数据, 2022, 8(2): 134-144. |
[8] | 王丽会, 秦永彬. 深度学习在医学影像中的研究进展及发展趋势[J]. 大数据, 2020, 6(6): 83-104. |
[9] | 夏正勋,杨一帆,罗圣美,赵大超,张燕,唐剑飞. 生成技术在人工智能平台中的应用探索[J]. 大数据, 2020, 6(6): 0-. |
[10] | 于璠. 新一代深度学习框架研究[J]. 大数据, 2020, 6(4): 69-80. |
[11] | 缐珊珊. 美俄人工智能军事应用发展分析[J]. 大数据, 2020, 6(4): 125-132. |
[12] | 孟小峰, 王雷霞, 刘俊旭. 人工智能时代的数据隐私、垄断与公平[J]. 大数据, 2020, 6(1): 35-46. |
[13] | 陈群, 陈肇强, 侯博议, 王丽娟, 罗雨晨, 李战怀. 人工智能风险分析技术研究进展[J]. 大数据, 2020, 6(1): 47-59. |
[14] | 李肯立, 刘楚波. 边缘智能:现状和展望[J]. 大数据, 2019, 5(3): 69-75. |
[15] | 周知, 于帅, 陈旭. 边缘智能:边缘计算与人工智能融合的新范式[J]. 大数据, 2019, 5(2): 53-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|