大数据 ›› 2024, Vol. 10 ›› Issue (1): 46-61.doi: 10.11959/j.issn.2096-0271.2023079
• 研究 • 上一篇
徐道柱1, 赵凯琳2, 康栋3, 马超1, 冯禹铭2, 李紫宣2, 弋步荣3, 靳小龙2
出版日期:
2024-01-01
发布日期:
2024-01-01
作者简介:
徐道柱(1982- ),男,博士,西安测绘研究所副研究员,主要研究方向为地理信息处理与应用。Daozhu XU1, Kailin ZHAO2, Dong KANG3, Chao MA1, Yuming FENG2, Zixuan LI2, Burong YI3, Xiaolong JIN2
Online:
2024-01-01
Published:
2024-01-01
摘要:
实体获取是信息抽取的核心任务。近年来,在大数据训练模型的趋势下,深度学习在实体获取任务上取得了成功。但在自然环境等领域中,地形、灾害等类型的实体样本或者标注样本很少,而且对无标签样本进行标注又耗时费力。因此,面向低资源场景的实体获取逐渐受到关注,该任务被称作低资源实体获取或小样本实体获取。系统地梳理了当前低资源实体获取的相关工作,具体来说介绍了基于元学习、基于多任务学习和基于提示学习这3类方法的研究现状;总结了目前常用的低资源实体获取数据集和代表性模型在这些数据集上的实验结果;对低资源实体获取的方法进行了总结与分析;总结了低资源实体获取的挑战,并展望了未来发展方向。
中图分类号:
徐道柱, 赵凯琳, 康栋, 马超, 冯禹铭, 李紫宣, 弋步荣, 靳小龙. 面向低资源场景的实体知识获取研究综述[J]. 大数据, 2024, 10(1): 46-61.
Daozhu XU, Kailin ZHAO, Dong KANG, Chao MA, Yuming FENG, Zixuan LI, Burong YI, Xiaolong JIN. Survey on entity extraction for lowresource scenarios[J]. Big Data Research, 2024, 10(1): 46-61.
表1
SNIPS数据集低资源实体获取结果"
设置 | 模型 | We | Mu | P1 | Bo | Se | Re | Cr | 平均F1值 |
1-shot | L-TapNet+CDT[ | 71.53% | 60.56% | 66.27% | 84.54% | 76.27% | 70.79% | 62.89% | 70.41% |
ESD[ | 78.25% | 54.74% | 71.15% | 71.45% | 67.85% | 71.52% | 78.14% | 70.44% | |
DFS-NER[ | 77.61% | 65.21% | 72.39% | 89.31% | 78.11% | 72.65% | 67.50% | 74.68% | |
5-shot | L-TapNet+CDT[ | 71.64% | 67.16% | 75.88% | 84.38% | 82.58% | 70.05% | 73.41% | 75.01% |
ESD[ | 84.50% | 66.61% | 79.69% | 82.57% | 82.22% | 80.44% | 81.13% | 79.59% | |
DFS-NER[ | 80.42% | 76.81% | 84.52% | 90.02% | 86.79% | 78.32% | 84.81% | 83.10% |
表2
CrossNER数据集低资源实体获取结果"
设置 | 模型 | CoNLL-03 | GUM | WNUT-17 | OntoNotes 5.0 | 平均F1值 |
1-shot | L-TapNet+CDT[ | 44.30% | 12.04% | 20.80% | 15.17% | 23.08% |
DecomMetaNER[ | 46.09% | 17.54% | 25.14% | 34.13% | 30.73% | |
SpanProto[ | 47.70% | 19.92% | 28.31% | 36.41% | 33.09% | |
5-shot | L-TapNet+CDT[ | 45.35% | 11.65% | 23.30% | 20.95% | 25.31% |
DecomMetaNER[ | 58.18% | 31.36% | 31.02% | 45.55% | 41.53% | |
SpanProto[ | 61.88% | 35.12% | 33.94% | 48.21% | 44.79% |
表3
Few-NERD数据集低资源实体获取结果"
模型 | INTRA(5-way) | INTRA(10-way) | INTER(5-way) | INTER(10-way) |
Proto[ | 20.76% | 15.05% | 38.83% | 32.45% |
NNShot[ | 25.78% | 18.27% | 47.24% | 38.87% |
StructShot[ | 30.21% | 21.03% | 51.88% | 43.34% |
L-TapNet+CDT[ | 25.81% | 18.02% | 41.44% | 36.80% |
DFS-NER[ | 35.41% | 20.31% | 48.03% | 34.38% |
CONTaiNER[ | 40.43% | 33.84% | 55.95% | 48.35% |
ESD[ | 36.08% | 30.00% | 59.29% | 52.16% |
DecomMetaNER[ | 49.48% | 42.84% | 64.75% | 58.65% |
SpanProto[ | 54.49% | 45.39% | 73.36% | 66.26% |
[1] | HOSPEDALES T , ANTONIOU A , MICAELLI P ,et al. Meta-learning in neural networks:a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,44(9): 5149-5169. |
[2] | FRITZLER A , LOGACHEVA V , KRETOV M . Few-shot classification in named entity recognition task[C]// Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. New York:ACM, 2019: 993-1000. |
[3] | SNELL J , SWERSKY K , ZEMEL R . Prototypical networks for few-shot learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM, 2017: 4080-4090. |
[4] | YANG Y , KATIYAR A . Simple and effective few-shot named entity recognition with structured nearest neighbor learning[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg:Association for Computational Linguistics, 2020: 6365-6375. |
[5] | HOU Y T , CHE W X , LAI Y K ,et al. Few-shot slot tagging with collapsed dependency transfer and label-enhanced task-adaptive projection network[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2020: 1381-1393. |
[6] | LAFFERTY J , MCCALLUM A , PEREIRA F C N . Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the 18th International Conference on Machine Learning. New York:ACM, 2001: 282-289. |
[7] | DAS S S S , KATIYAR A , PASSONNEAU R ,et al. CONTaiNER:few-shot named entity recognition via contrastive learning[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). Stroudsburg:Association for Computational Linguistics, 2022: 6338-6353. |
[8] | WANG J N , WANG C Y , TAN C Q ,et al. SpanProto:a two-stage spanbased prototypical network for fewshot named entity recognition[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2022: 3466-3476. |
[9] | LI J , CHIU B , FENG S S ,et al. Fewshot named entity recognition via metalearning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022,34(9): 4245-4256. |
[10] | LI J , SHANG S , SHAO L . MetaNER:named entity recognition with metalearning[C]// Proceedings of The Web Conference 2020. New York:ACM, 2020: 429-440. |
[11] | FINN C , ABBEEL P , LEVINE S . Modelagnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York:ACM, 2017: 1126-1135. |
[12] | ZHANG T , XIA C Y , LU C T ,et al. MZET:memory augmented zero-shot fine-grained named entity typing[C]// Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg:International Committee on Computational Linguistics, 2020: 77-87. |
[13] | JI B , LI S , GAN S ,et al. Few-shot named entity recognition with entitylevel prototypical network enhanced by dispersedly distributed prototypes[EB]. arXiv preprint, 2022,arXiv:2208.08023. |
[14] | WEN W , LIU Y B , LIN Q ,et al. Fewshot named entity recognition with joint token and sentence awareness[J]. Data Intelligence, 2023,5(3): 767-785. |
[15] | WANG P Y , XU R X , LIU T Y ,et al. An enhanced span-based decomposition method for few-shot sequence labeling[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg:Association for Computational Linguistics, 2022: 5012-5024. |
[16] | MA T T , JIANG H Q , WU Q H ,et al. Decomposed meta-learning for few-shot named entity recognition[C]// Proceedings of Findings of the Association for Computational Linguistics:ACL 2022. Stroudsburg:Association for Computational Linguistics, 2022: 1584-1596. |
[17] | HUANG H N , FENG Y M , JIN X L ,et al. DFS-NER:description enhanced fewshot NER via prompt learning and metalearning[C]// Proceedings of 2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). Piscataway:IEEE Press, 2023: 796-803. |
[18] | BAPNA A,TüR G , HAKKANI-TüR D ,et al. Towards zero-shot frame semantic parsing for domain scaling[C]// Proceedings of Interspeech 2017. ISCA:ISCA, 2017: 2476-2480. |
[19] | LEE S , JHA R . Zero-shot adaptive transfer for conversational language understanding[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33(1): 6642-6649. |
[20] | SHAH D , GUPTA R , FAYAZI A ,et al. Robust zero-shot cross-domain slot filling with example values[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2019: 5484-5490. |
[21] | LIU Z H , WINATA G I , FUNG P . Zeroresource cross-domain named entity recognition[C]// Proceedings of the 5th Workshop on Representation Learning for NLP. Stroudsburg:Association for Computational Linguistics, 2020: 1-6. |
[22] | ZHANG Y , YANG Q . A survey on multitask learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022,34(12): 5586-5609. |
[23] | WEI J , BOSMA M , ZHAO V Y ,et al. Finetuned language models are zero-shot learners[EB]. arXiv preprint, 2021,arXiv:2109.01652. |
[24] | ZHANG N , LI L , CHEN X ,et al. Differentiable prompt makes pretrained language models better few-shot learners[EB]. arXiv preprint, 2021,arXiv:2108.13161. |
[25] | CUI L Y , WU Y , LIU J ,et al. Templatebased named entity recognition using BART[C]// Proceedings of Findings of the Association for Computational Linguistics:ACL-IJCNLP 2021. Stroudsburg:Association for Computational Linguistics, 2021: 1835-1845. |
[26] | MA R T , ZHOU X , GUI T ,et al. Template-free prompt tuning for few-shot NER[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg:Association for Computational Linguistics, 2022: 5721-5732. |
[27] | HUANG Y , HE K , WANG Y ,et al. Copner:contrastive learning with prompt guiding for few-shot named entity recognition[C]// Proceedings of the 29th International conference on computational linguistics. Gyeongju:International Committee on Computational Linguistics, 2022: 2515-2527. |
[28] | SUN Y , ZHENG Y , HAO C ,et al. NSPBERT:a prompt-based zero-shot learner through an original pre-training task:next sentence prediction[EB]. arXiv preprint, 2021,arXiv:2109.03564. |
[29] | LI D , HU B , CHEN Q ,et al. Prompt-based text entailment for low-resource named entity recognition[EB]. arXiv preprint, 2022,arXiv:2211.03039. |
[30] | LIU A T , XIAO W , ZHU H ,et al. QaNER:prompting question answering models for few-shot named entity recognition[EB]. arXiv preprint, 2022,arXiv:2203.01543. |
[31] | COUCKE A , SAADE A , BALL A ,et al. Snips voice platform:an embedded spoken language understanding system for private-by-design voice interfaces[EB]. arXiv preprint, 2018,arXiv:1805.10190. |
[32] | LIU Z H , XU Y , YU T Z ,et al. CrossNER:evaluating cross-domain named entity recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021,35(15): 13452-13460. |
[33] | DING N , XU G W , CHEN Y L ,et al. Few-NERD:a few-shot named entity recognition dataset[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:Long Papers). Stroudsburg:Association for Computational Linguistics, 2021: 3198-3213. |
[34] | VAN DIS E A M , BOLLEN J , ZUIDEMA W ,et al. ChatGPT:five priorities for research[J]. Nature, 2023,614(7947): 224-226. |
[1] | 贺广福, 薛源海, 陈翠婷, 俞晓明, 刘欣然, 程学旗. 基于容忍因子的近似最近邻混合查询算法[J]. 大数据, 2024, 10(1): 17-34. |
[2] | 李云辉, 陈家辉. 基于区块链的感知数据交易隐私保护方案[J]. 大数据, 2023, 9(6): 39-52. |
[3] | 刘震, 赵嵩, 杨涛, 蔡太伟. 基于深度学习的施工安全隐患整改智能推荐系统[J]. 大数据, 2023, 9(6): 124-136. |
[4] | 张传尧, 司世景, 王健宗, 肖京. 联邦元学习综述[J]. 大数据, 2023, 9(2): 122-146. |
[5] | 戴筠. 基于双曲空间图嵌入的科研热点预测[J]. 大数据, 2022, 8(6): 94-104. |
[6] | 吴建汉, 司世景, 王健宗, 肖京. 联邦学习攻击与防御综述[J]. 大数据, 2022, 8(5): 12-32. |
[7] | 张燕, 杨一帆, 伊人, 罗圣美, 唐剑飞, 夏正勋. 隐私计算场景下数据质量治理探索与实践[J]. 大数据, 2022, 8(5): 55-73. |
[8] | 兰海波. 混合型数据的邻域条件互信息熵属性约简算法[J]. 大数据, 2022, 8(4): 133-144. |
[9] | 王杰, 张松岩, 梁吉业. 融合一致性正则与流形正则的半监督深度学习算法[J]. 大数据, 2022, 8(3): 103-114. |
[10] | 敖绍林, 秦永彬, 黄瑞章, 陈艳平, 刘丽娟, 郑庆华, 陈昌恒, 程少芬. 基于卷积神经网络的辅助分案方法研究[J]. 大数据, 2022, 8(2): 145-157. |
[11] | 张宝华, 张华平, 厉铁帅, 商建云. 基于多输入模型及句法结构的中文评论情感分析方法[J]. 大数据, 2021, 7(6): 41-52. |
[12] | 杜雪涛. 大数据认知计算在内容安全管控中的应用[J]. 大数据, 2021, 7(6): 53-66. |
[13] | 孔芳, 杨悦然, 陈卫, 李帅. 基于优化反馈的组合在线学习[J]. 大数据, 2021, 7(5): 111-130. |
[14] | 申宇铭, 杜剑峰. 时态知识图谱补全的方法及其进展[J]. 大数据, 2021, 7(3): 30-41. |
[15] | 陈华钧, 张文, 黄志文, 叶橄强, 文博, 张伟. 大规模知识图谱预训练模型及电商应用[J]. 大数据, 2021, 7(3): 97-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|