[1] |
JENSEN J F , KJEMS E , LEHMANN N ,et al. Virtual space:spatiality in virtual inhabited 3D worlds[M].[S.l.]: Springer Science & Business Media, 2002.
|
[2] |
ZAHARIADIS T , DARAS P , BALLESTEROS L B ,et al. Towards future 3D media internet[EB]. NEM Summit, 2008.
|
[3] |
LAEEQ K. Metaverse:why,how and what[Z]. 2022.
|
[4] |
NING H , WANG H , LIN Y ,et al. A survey on metaverse:the state-ofthe-art,technologies,applications,and challenges[EB]. arXiv preprint, 2021,arXiv:2111.09673.
|
[5] |
BALLARDINI R M , HE K , ROOS T . AI-generated content:authorship and inventorship in the age of artificial intelligence[M]// Online distribution of content in the EU.[S.l.]: Edward Elgar Publishing, 2019: 117-135.
|
[6] |
LEE L H , BRAUD T , ZHOU P ,et al. All one needs to know about metaverse:a complete survey on technological singularity,virtual ecosystem,and research agenda[EB]. arXiv preprint, 2021,arXiv:2110.05352.
|
[7] |
FANG Z X , CAI L B , WANG G . MetaHuman creator the starting point of the metaverse[C]// Proceedings of 2021 International Symposium on Computer Technology and Information Science. Piscataway:IEEE Press, 2021: 154-157.
|
[8] |
PAWAR C S , GANATRA A , NAYAK A ,et al. Use of machine learning services in cloud[M]// Computer networks,big data and IoT. Singapore: Springer, 2021: 43-52.
|
[9] |
HU C , JIANG J , WANG Z ,et al. Decentralized federated learning:a segmented gossip approach[EB]. arXiv preprint, 2019,arXiv:1908.07782.
|
[10] |
DHELIM S , KECHADI T , CHEN L ,et al. Edge-enabled metaverse:the convergence of metaverse and mobile edge computing[EB]. arXiv preprint, 2022,2022,arXiv:2205.02764.
|
[11] |
WU C L , WANG Z , SUN L F . PAAS:a preference-aware deep reinforcement learning approach for 360° video streaming[C]// Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video. New York:ACM, 2021: 34-41.
|
[12] |
WANG Y T , SU Z , ZHANG N ,et al. A survey on metaverse:fundamentals,security,and privacy[EB]. arXiv preprint, 2022,arXiv:2203.02662.
|
[13] |
XU M , NG W C , LIM W Y B ,et al. A full dive into realizing the edge-enabled metaverse:visions,enabling technologies,and challenges[EB]. arXiv preprint, 2022,arXiv:2203.05471.
|
[14] |
MACH P , BECVAR Z . Mobile edge computing:a survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017,19(3): 1628-1656.
|
[15] |
ZHANG J L , CHEN B , ZHAO Y C ,et al. Data security and privacy-preserving in edge computing paradigm:survey and open issues[J]. IEEE Access, 2018,6: 18209-18237.
|
[16] |
朱锐, 王宏志, 崔双双 ,等. 面向元宇宙的云边端协同大数据管理[J]. 大数据, 2023,9(1): 63-77.
|
|
ZHU R , WANG H Z , CUI S S ,et al. Cloud-edge-end collaborative big data management for metaverse[J]. Big Data Research, 2023,9(1): 63-77.
|
[17] |
周知, 于帅, 陈旭 . 边缘智能:边缘计算与人工智能融合的新范式[J]. 大数据, 2019,5(2): 53-63.
|
|
ZHOU Z , YU S , CHEN X . Edge intelligence:a new nexus of edge computing and artificial intelligence[J]. Big Data Research, 2019,5(2): 53-63.
|
[18] |
NOMA T , ZHAO L , BADLER N I . Design of a virtual human presenter[J]. IEEE Computer Graphics and Applications, 2000,20(4): 79-85.
|
[19] |
MA G , WANG Z , ZHANG M ,et al. Understanding performance of edge content caching for mobile video streaming[J]. IEEE Journal on Selected Areas in Communications, 2017,35(5): 1076-1089.
|
[20] |
JIANG J Y , LUO Z Y , HU C H ,et al. Joint model and data adaptation for cloud inference serving[C]// Proceedings of 2021 IEEE Real-Time Systems Symposium. Piscataway:IEEE Press, 2021: 279-289.
|
[21] |
SHAKER N , TOGELIUS J , NELSON M J . Procedural content generation in games[M]. Cham: Springer, 2016.
|
[22] |
CRESWELL A , WHITE T , DUMOULIN V ,et al. Generative adversarial networks:an overview[J]. IEEE Signal Processing Magazine, 2018,35(1): 53-65.
|
[23] |
WANG Z , WU S , XIE W ,et al. NeRF:neural radiance fields without known camera parameters[EB]. arXiv preprint, 2021,arXiv:2102.07064.
|
[24] |
CHOUDHARY T , MISHRA V , GOSWAMI A ,et al. A comprehensive survey on model compression and acceleration[J]. Artificial Intelligence Review, 2020,53(7): 5113-5155.
|
[25] |
CHEN C , YIN Y C , SHANG L F ,et al. bert2BERT:towards reusable pretrained language models[EB]. arXiv preprint, 2021,arXiv:2110.07143.
|
[26] |
POLINO A , PASCANU R , ALISTARH D ,et al. Model compression via distillation and quantization[EB]. arXiv preprint, 2018,arXiv:1802.05668.
|
[27] |
TANG C , OUYANG K , WANG Z ,et al. Mixed-precision neural network quantization via learned layer-wise importance[C]// Proceedings of European Conference on Computer Vision.[S.l.:s.n.], 2022.
|
[28] |
HE Z L , LI H S , WANG Z ,et al. Adaptive compression for online computer vision:an edge reinforcement learning approach[J]. ACM Transactions on Multimedia Computing,Communications,and Applications, 2021,17(4): 1-23.
|
[29] |
LI H S , HU C H , JIANG J Y ,et al. JALAD:joint accuracy-and latency-aware deep structure decoupling for edge-cloud execution[C]// Proceedings of 2018 IEEE 24th International Conference on Parallel and Distributed Systems. Piscataway:IEEE Press, 2019: 671-678.
|
[30] |
GOIAN H S , AL-JARRAH O Y , MUHAIDAT S ,et al. Popularity-based video caching techniques for cache-enabled networks:a survey[J]. IEEE Access, 2019,7: 27699-27719.
|
[31] |
NARAYANAN A , VERMA S , RAMADAN E ,et al. DeepCache:a deep learning based framework for content caching[C]// Proceedings of the 2018 Workshop on Network Meets AI & ML. New York:ACM, 2018: 48-53.
|
[32] |
YE J H , LI Z C , WANG Z ,et al. Joint cache size scaling and replacement adaptation for small content providers[C]// Proceedings of IEEE INFOCOM 2021- IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2021: 1-10.
|
[33] |
ZHOU S J , WANG Z , HU C H ,et al. Caching in dynamic environments:a near-optimal online learning approach[J]. IEEE Transactions on Multimedia, 2023,25: 792-804.
|
[34] |
朱文武, 王智 . 数据驱动的网络多媒体边缘内容分发[J]. 中国科学(信息科学), 2021,51(3): 468-504.
|
|
ZHU W W , WANG Z . Data-driven multimedia edge network and content delivery[J]. Scientia Sinica (Informationis), 2021,51(3): 468-504.
|