大数据 ›› 2015, Vol. 1 ›› Issue (3): 8-22.doi: 10.11959/j.issn.2096-0271.2015025

• 专题:网络大数据 •    下一篇

网络表示学习

陈维政,张岩,李晓明   

  1. 北京大学信息科学技术学院 北京 100871
  • 出版日期:2015-06-20 发布日期:2020-09-28
  • 作者简介:陈维政,男,北京大学博士生,主要研究方向为机器学习和社会网络分析。|张岩,男,北京大学教授、博士生导师,主要研究方向为信息检索、文本分析和数据挖掘。|李晓明,男,北京大学教授、博士生导师,主要研究方向为搜索引擎、网络数据挖掘和并行与分布式系统。
  • 基金资助:
    国家重点基础研究发展计划(“973”计划)基金资助项目(2014CB340400);国家自然科学基金资助项目(61272340);国家自然科学基金资助项目(61472013)

Network Representation Learning

Weizheng Chen,Yan Zhang,Xiaoming Li   

  1. School of Electronic Engineering and Computer Science,Peking University,Beijing 100871,China
  • Online:2015-06-20 Published:2020-09-28
  • Supported by:
    The National Basic Research Program of China(2014CB340400);The National Natural Science Foundation of China(61272340);The National Natural Science Foundation of China(61472013)

摘要:

以Facebook、Twitter、微信和微博为代表的大型在线社会网络不断发展,产生了海量体现网络结构的数据。采用机器学习技术对网络数据进行分析的一个重要问题是如何对数据进行表示。首先介绍了网络表示学习的研究背景和相关定义。然后按照算法类别,介绍了当前5类主要的网络表示学习算法,特别地,对基于深度学习的网络表示学习技术进行了详细的介绍。之后讨论了网络表示学习的评测方法和应用场景。最后,探讨了网络表示学习的研究前景。

关键词: 网络, 表示学习, 深度学习

Abstract:

Along with the constant growth of massive online social networks such as Facebook,Twitter,Weixin and Weibo,a tremendous amount of network data sets are generated.How to represent the data is an important aspect when we apply machine learning techniques to analyze network data sets.Firstly,the research background was introduced and the definitions of NRL (network representation learning) were related.According to the categories of different algorithms,five kinds of primary NRL algorithms were introduced.Particularly,a detailed introduction to NRL algorithms based deep learning techniques was given emphatically.Then the evaluation methods and application scenarios of NRL were discussed.Finally,the research prospect of NRL in the future was discussed.

Key words: network, representation learning, deep learning

中图分类号: 

No Suggested Reading articles found!