大数据 ›› 2017, Vol. 3 ›› Issue (2): 45-66.doi: 10.11959/j.issn.2096-0271.2017019
出版日期:
2017-03-20
发布日期:
2017-03-24
作者简介:
徐优俊(1990-),男,北京大学前沿交叉学科研究院博士生,主要研究方向为药物设计与药物信息。|裴剑锋(1975-),男,博士,北京大学前沿交叉学科研究院特聘研究员,主要研究方向为药物设计与药物信息。
基金资助:
Online:
2017-03-20
Published:
2017-03-24
Supported by:
摘要:
深度学习在计算机视觉、语音识别和自然语言处理三大领域中取得了巨大的成功,带动了人工智能的快速发展。将深度学习的关键技术应用于化学信息学,能够加快实现化学信息处理的人工智能化。化合物结构与性质的定量关系研究是化学信息学的主要任务之一,着重介绍各类深度学习框架(深层神经网络、卷积神经网络、循环或递归神经网络)应用于化合物定量构效关系模型的研究进展,并针对深度学习在化学信息学中的应用进行了展望。
中图分类号:
徐优俊, 裴剑锋. 深度学习在化学信息学中的应用[J]. 大数据, 2017, 3(2): 45-66.
Youjun XU, Jianfeng PEI. Deep learning for chemoinformatics[J]. Big Data Research, 2017, 3(2): 45-66.
表1
深度神经网络框架在QSAR中的应用"
模型 应用问题 | 数据集 | 单(S)或多(M) | 编码方式 | 表现 | Pre-train | ReLU | Dropout | BN | V | Ref. |
DNN 生物活性 | Merck | S | 原子水平特征 | R2:0.494 | 1 | 1 | 1 | 0 | 0 | 35 |
生物活性 | PCBA | M | 分子水平特征(Dragon) | 平均 AUC:0.825 | 1 | 1 | 1 | 0 | 0 | 40 |
生物活性 | ChEMBL | M | 分子水平特征(ECFP) | 平均 AUC:0.830 | nan | nan | nan | nan | 0 | 46 |
生物活性 | PCBA、MUV、DUD-E | M | 分子水平特征(ECFP) | 中值 AUC:0.873、0.841、0.818 | 0 | 1 | 1 | 0 | 0 | 56 |
毒性 | Tox21 | M | 分子水平特征(ECFP等) | 平均 AUC:0.837 | 0 | 1 | 1 | 0 | 1 | 57 |
CNN 水溶性、药物有效性、有机光转化活性 | 参考文献[64-66] | S | 原子水平特征 | RMSE:0.520、1.16、1.43 | 0 | 1 | 0 | 1 | 1 | 61 |
水溶性、药物有效性、有机光转化活性 | 参考文献[64-66] | M | 原子水平特征 | RMSE:0.460、1.07、1.10 | 0 | 1 | 1 | 0 | 0 | 66 |
活性、毒性 | PCBA、MUV、Tox21 | 中值 AUC:0.909、0.875、0.867 | ||||||||
环氧化作用 | 参考文献[68] | S | 原子和分子水平特征 | AUC:0.949、0.793 | nan | nan | nan | nan | 1 | 68 |
与软亲核试剂的反应 | 参考文献[69] | ACC:80.6%、90.8% | 69 | |||||||
与蛋白口袋的作用 | DUD-E | S | 原子水平特征 | 平均 AUC:0.745~0.895 | 0 | 1 | 0 | 0 | 0 | 70 |
与蛋白口袋的作用 | DUD | S | 原子水平特征(word embedding) | 平均 AUC:0.810 | 0 | 1 | 0 | 0 | 0 | 76 |
RNN 水溶性 | 参考文献[78-81] | S | 原子水平特征 | R2:0.920、0.910、0.810 | 0 | 0 | 0 | 0 | 0 | 77 |
肝毒性 | [NCTR,Greene,Xu]、Liew | S | ACC:86.9%、74.8% | 0 | 0 | 0 | 0 | 0 | 82 | |
毒性 | Tox21、SIDER | S | 原子水平特征 | ACC:0.757~0.840、0.602~0.752 | 0 | 1 | 0 | 1 | 1 | 84 |
注:单( S )或多( M )表示单任务或者多任务模型;P r et r a in表示是否采用预训练技术;R e L U表示是否采用R e L U训练技术;B N表示是否采用B a t c h N o r m a liza t ion训练技术;D r o p o u t表示是否采用D r o p o u t训练技术;V表示是否对隐层进行可视化分析;R e f表示对应的参考文献;1 , 0 , n a n:1表示应用该技术, 0表示没有应用该技术, n a n表示未提及;A C C表示准确率( a c c u r a c y )。技术有助于开发高效的QSAR模型。 |
[1] | HINTON G , DENG L , YU D ,et al. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012,29(6): 82-97. |
[2] | KRIZHEVSKY A , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012,25(2): 1097-1105. |
[3] | COLLOBERT R , WESTON J . A unified architecture for natural language processing:deep neural networks with multitask learning[C]// The 25th International Conference on Machine Learning,July 5-9,2008,Helsinki,Finland. New York: ACM Press, 2008:160-167. |
[4] | GAWEHN E , HISS J A , SCHNEIDER G . Deep learning in drug discovery[J]. Molecular Informatics, 2016,35(1): 3-14. |
[5] | RAGHU M , POOLE B , KLEINBERG J ,et al. On the expressive power of deep neural networks[J]. Statistics, 2016,arXiv:1606.05336. |
[6] | HINTON G E , OSINDERO S , TEH Y W . A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18(7): 1527-1554. |
[7] | SRIVASTAVA N , HINTON G E , KRIZHEVSKY A ,et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014,15(1): 1929-1958. |
[8] | IOFFE S , SZEGEDY C . Batch normalization:accelerating deep network training by reducing internal covariate shift[J]. Computer Science, 2015,arXiv:1502.03167. |
[9] | GLOROT X , BORDES A , BENGIO Y . Deep sparse rectifier neural networks[C]// The 14th International Conference on Artificial Intelligence and Statistics,April 11-13,2011,Fort Lauderdale,USA.[S.l.:s.n.], 2011,315-323. |
[10] | DUCHI J , HAZAN E , SINGER Y . Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011,12(7): 2121-2159. |
[11] | ZEILER M D . ADADELTA:an adaptive learning rate method[J]. Computer Science, 2012,arXiv:1212.5701. |
[12] | KINGMA D , BA J . Adam:a method for stochastic optimization[J]. Computer Science, 2014:arXiv:1412.6980. |
[13] | MIKOLOV T,KARAFIáT M , BURGET L , et al . Recurrent neural network based language model[C]// The 11th Annual Conference of the International Speech Communication Association,September 26-30,2010,Makuhari,Chiba.[S.l.:s.n.], 2010,1045-1048. |
[14] | WU Y , SCHUSTER M , CHEN Z ,et al. Google's neural machine translation system:bridging the gap between human and machine translation[J]. Computer Science, 2016,arXiv:1609.08144. |
[15] | VINCENT P , LAROCHELLE H , LAJOIE I ,et al. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010,11(12): 3371-3408. |
[16] | SOCHER R . Recursive deep learning for natural language processing and computer vision[J]. Citeseer, 2014(8):1. |
[17] | HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997,9(8): 1735-1780. |
[18] | 孙潭霖, 裴剑锋 . 大数据时代的药物设计与药物信息[J]. 科学通报, 2015(8): 689-693. |
SUN T L , PEI J F . Drug design and drug information is the big data era[J]. Chinese Science Bulletin, 2015(8): 689-693. | |
[19] | SVETNIK V , LIAW A , TONG C ,et al. Random forest:a classification and regression tool for compound classification and QSAR modeling[J]. Journal of Chemical Information and Computer Sciences, 2003,43(6): 1947-1958. |
[20] | RUPP M , TKATCHENKO A,MüLLER K R ,et al. Fast and accurate modeling of molecular atomization energies with machine learning[J]. Physical Review Letters, 2012,108(5): 3125-3130. |
[21] | RACCUGLIA P , ELBERT K C , ADLER P D F ,et al. Machine-learning-assisted materials discovery using failed experiments[J]. Nature, 2016,533(7601): 73-76. |
[22] | DU H , WANG J , HU Z ,et al. Prediction of fungicidal activities of rice blast disease based on least-squares support vector machines and project pursuit regression[J]. Journal of Agricultural and Food Chemistry, 2008,56(22): 10785-10792. |
[23] | LECUN Y , BENGIO Y , HINTON G . Deeplearning[J]. Nature, 2015,521(7553): 436-444. |
[24] | JAITLY N , NGUYEN P , SENIOR A W ,et al. The 13th Annual Conference of the International Speech Communication Association,September 9-13,2012,Portland,OR,USA.[S.l.:s.n.], 2012,1-4. |
[25] | DAHL G E , YU D , DENG L ,et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]. IEEE Transactions on Audio,Speech,and Language Processing, 2012,20(1): 30-42. |
[26] | GRAVES A , MOHAMED A R , HINTON G . Speech recognition with deep recurrent neural networks[C]// 2013 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP),May 26-31,2013,Vancouver,BC,Canada, New Jersey: IEEE Press, 2013: 6645-6649. |
[27] | DENG L , YU D , DAHL G E . Deep belief network for large vocabulary continuous speech recognition:8972253[P]. 2015-03-20. |
[28] | GAO J , HE X , DENG L . Deep learning for web search and natural language processing[R]. Redmond:Microsoft Research, 2015. |
[29] | MIKOLOV T , SUTSKEVER I , CHEN K ,et al. Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013,arXiv:1310.4546. |
[30] | SOCHER R , LIN C C , MANNING C ,et al. Parsing natural scenes and natural language with recursive neural networks[C]// The 28th International Conference on Machine Learning (ICML-11),June 28-July 2,2011,Bellevue,Washington,USA.[S.l.:s.n.], 2011:129-136. |
[31] | HE K , ZHANG X , REN S ,et al. Delving deep into rectifiers:surpassing human-level performance on imagenet classification[C]// The IEEE International Conference on Computer Vision,December 13-16,2015,Santiago,Chile, New Jersey: IEEE Press, 2015: 1026-1034. |
[32] | SZEGEDY C , LIU W , JIA Y ,et al. Goingdeeper with convolutions[C]// The IEEE Conference on Computer Vision and Pattern Recognition,June 7-12,2015,Boston,MA,USA, New Jersey: IEEE Press, 2015: 1-9. |
[33] | RUSSAKOVSKY O , DENG J , SU H ,et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015,115(3): 211-252. |
[34] | HE K , ZHANG X , REN S ,et al. Deep residual learning for image recognition[C]// The IEEE Conference on Computer Vision and Pattern Recognition,June 27-30,2016,Las Vegas,NV,USA, New Jersey: IEEE Press, 2016: 770-778. |
[35] | MARKOFF J . Scientists see promise in deep-learning programs[N]. New York Times, 2012-10-25. |
[36] | CARHART R E , SMITH D H , VENKATARAGHAVAN R . Atom pairs as molecular features in structure-activity studies:definition and applications[J]. Journal of Chemical Information and Computer Sciences, 1985,25(2): 64-73. |
[37] | KEARSLEY S K , SALLAMACK S , FLUDER E M ,et al. Chemical similarity using physiochemical property descriptors[J]. Journal of Chemical Information and Computer Sciences, 1996,36(1): 118-127. |
[38] | RUMELHART D E , HINTON G E , WILLIAMS R J . Learning representations by back-propagating errors[J]. Cognitive Modeling, 1988,5(3):1. |
[39] | MA J , SHERIDAN R P , LIAW A ,et al. Deep neural nets as a method for quantitative structure-activity relationships[J]. Journal of Chemical Information and Modeling, 2015,55(2): 263-274. |
[40] | DAHL G E , JAITLY N , SALAKHUTDINOV R . Multi-task neural networks for QSAR predictions[J]. Computer Science, 2014,arXiv:1406.1231. |
[41] | EVGENIOU T , PONTIL M . Regularized multitask learning[C]// The 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,August 22-25,2004,Seattle,WA,USA. New Jersey: IEEE Press, 2004: 109-117. |
[42] | MAURI A , CONSONNI V , PAVAN M ,et al. Dragon software:an easy approach to molecular descriptor calculations[J]. Match, 2006,56(2): 237-248. |
[43] | SNOEK J , LAROCHELLE H , ADAMS R P . Practical bayesian optimization of machine learning algorithms[J]. Advances in Neural Information Processing Systems, 2014,arXiv:1206.2944. |
[44] | SNOEK J , SWERSKY K , ZEMEL R S ,et al. Input warping for bayesian optimization of non-stationary functions[C]// International Conference on Machine Learning,June 21-26,2014,Beijing,China.[S.l.:s.n.], 2014:1674-1682. |
[45] | FRIEDMAN J H . Greedy function approximation:a gradient boosting machine[J]. Annals of Statistics, 2001,29(5): 1189-1232. |
[46] | UNTERTHINER T , MAYR A , KLAMBAUER G ,et al. Multi-task deep networks for drug target prediction[J]. Neural Information Processing System, 2014: 1-4. |
[47] | GAULTON A , BELLIS L J , BENTO A P ,et al. ChEMBL:a large-scale bioactivity database for drug discovery[J]. Nucleic Acids Research, 2012,40(D1): D1100-D1107. |
[48] | ROGERS D , HAHN M . Extendedconnectivity fingerprints[J]. Journal of Chemical Information and Modeling, 2010,50(5): 742-754. |
[49] | HARPER G , BRADSHAW J , GITTINS J C ,et al. Prediction of biological activity for high-throughput screening using binary kernel discrimination[J]. Journal of Chemical Information and Computer Sciences, 2001,41(5): 1295-1300. |
[50] | LOWE R , MUSSA H Y , NIGSCH F ,et al. Predicting the mechanism of phospholipidosis[J]. Journal of Cheminformatics, 2012,4(1):2. |
[51] | XIA X , MALISKI E G , GALLANT P ,et al. Classification of kinase inhibitors using a Bayesian model[J]. Journal of Medicinal Chemistry, 2004,47(18): 4463-4470. |
[52] | KEISER M J , ROTH B L , ARMBRUSTER B N ,et al. Relating protein pharmacology by ligand chemistry[J]. Nature Biotechnology, 2007,25(2): 197-206. |
[53] | WANG Y , SUZEK T , ZHANG J ,et al. PubChem bioassay:2014 update[J]. Nucleic Acids Research, 2014,42(Database Issue): 1075-1082. |
[54] | ROHRER S G , BAUMANN K . Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data[J]. Journal of Chemical Information and Modeling, 2009,49(2): 169-184. |
[55] | MYSINGER M M , CARCHIA M , IRWIN J J ,et al. Directory of useful decoys,enhanced (DUD-E):better ligands and decoys for better benchmarking[J]. Journal of Medicinal Chemistry, 2012,55(14): 6582-6594. |
[56] | RAMSUNDAR B , KEARNES S , RILEY P ,et al. Massively multitask networks for drug discovery[J]. Computer Science, 2015,arXiv:1502,02072. |
[57] | MAYR A , KLAMBAUER G , UNTERTHINER T ,et al. DeepTox:toxicity prediction using deep learning[J]. Frontiers in Environmental Science, 2016,3(8):80. |
[58] | KAZIUS J , MCGUIRE R , BURSI R . Derivation and validation of toxicophores for mutagenicity prediction[J]. Journal of Medicinal Chemistry, 2005,48(1): 312-320. |
[59] | FRIEDMAN J , HASTIE T , TIBSHIRANI R . Regularization paths for generalized linear models via coordinate descent[J]. Journal of Statistical Software, 2010,33(1):1. |
[60] | SIMON N , FRIEDMAN J , HASTIE T ,et al. Regularization paths for Cox’s proportional hazards model via coordinate descent[J]. Journal of Statistical Software, 2011,39(5):1. |
[61] | DUVENAUD D K , MACLAURIN D , IPARRAGUIRRE J ,et al. Convolutional networks on graphs for learning molecular fingerprints[J]. Advances in Neural Information Processing Systems, 2015,arXiv:1509.09292. |
[62] | GRAVES A , WAYNE G , DANIHELKA I . Neural turing machines[J]. Computer Science, 2014,arXiv:1410.5401. |
[63] | MORGAN H L . The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service[J]. Journal of Chemical Documentation, 1965,5(2): 107-113. |
[64] | DELANEY J S . ESOL:estimating aqueous solubility directly from molecular structure[J]. Journal of Chemical Information and Computer Sciences, 2004,44(3): 1000-1005. |
[65] | GAMO F-J , SANZ L M , VIDAL J ,et al. Thousands of chemical starting points for antimalarial lead identification[J]. Nature, 2010,465(7296): 305-310. |
[66] | HACHMANN J,OLIVARES-AMAYA R,ATAHAN-EVRENK S , et al . The Harvard clean energy project:largescale computational screening and design of organic photovoltaics on the world community grid[J]. The Journal of Physical Chemistry Letters, 2011,2(17): 2241-2251. |
[67] | KEARNES S , MCCLOSKEY K , BERNDL M ,et al. Molecular graph convolutions:moving beyond fingerprints[J]. Journal of Computer-Aided Molecular Design, 2016,30(8): 595-608. |
[68] | HUGHES T B , MILLER G P , SWAMIDASS S J . Modeling epoxidation of drug-like molecules with a deep machine learning network[J]. ACS Central Science, 2015,1(4): 168-180. |
[69] | HUGHES T B , MILLER G P , SWAMIDASS S J . Site of reactivity models predict molecular reactivity of diverse chemicals with glutathione[J]. Chemical Research in Toxicology, 2015,28(4): 797-809. |
[70] | WALLACH I , DZAMBA M , HEIFETS A . AtomNet:a deep convolutional neural network for bioactivity prediction in structure-based drug discovery[J]. Mathematische Zeitschrift, 2015,arXiv:1510.02855. |
[71] | KOES D R , BAUMGARTNER M P , CAMACHO C J . Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise[J]. Journal of Chemical Information and Modeling, 2013,53(8): 1893-1904. |
[72] | GABEL J , DESAPHY J R M , ROGNAN D . Beware of machine learning-based scoring functions on the danger of developing black boxes[J]. Journal of Chemical Information and Modeling, 2014,54(10): 2807-2815. |
[73] | SPITZER R , JAIN A N . Surflex-Dock:docking benchmarks and real-world application[J]. Journal of Computer-Aided Molecular Design, 2012,26(6): 687-699. |
[74] | COLEMAN R G , STERLING T , WEISS D R.SAMPL4 & DOCK3 . 7:lessons for automated docking procedures[J]. Journal of Computer-Aided Molecular Design, 2014,28(3): 201-209. |
[75] | ALLEN W J , BALIUS T E , MUKHERJEE S ,et al. DOCK 6:impact of new features and current docking performance[J]. Journal of Computational Chemistry, 2015,36(15): 1132-1156. |
[76] | PEREIRA J C , CAFFARENA E R , SANTOS C N D . Boosting docking-based virtual screening with deep learning[J]. Journal of Chemical Information and Modeling, 2016,arXiv:1608.04844. |
[77] | LUSCI A , POLLASTRI G , BALDI P . Deep architectures and deep learning in chemoinformatics:the prediction of aqueous solubility for drug-like molecules[J]. Journal of Chemical Information and Modeling, 2013,53(7): 1563-1575. |
[78] | JAIN N , YALKOWSKY S H . Estimation of the aqueous solubility I:application to organic nonelectrolytes[J]. Journal of Pharmaceutical Sciences, 2001,90(2): 234-252. |
[79] | LOUIS B , AGRAWAL V K , KHADIKAR P V . Prediction of intrinsic solubility of generic drugs using MLR,ANN and SVM analyses[J]. European Journal of Medicinal Chemistry, 2010,45(9): 4018-4025. |
[80] | AZENCOTT C A , KSIKES A , SWAMIDASS S J ,et al. One-to fourdimensional kernels for virtual screening and the prediction of physical,chemical,and biological properties[J]. Journal of Chemical Information and Modeling, 2007,47(3): 965-974. |
[81] | FR?HLICH H , WEGNER J K , ZELL A . Towards optimal descriptor subsetselection with support vector machines in classification and regression[J]. QSAR &Combinatorial Science, 2004,23(5): 311-318. |
[82] | XU Y , DAI Z , CHEN F ,et al. Deep learning for drug-induced liver injury[J]. Journal of Chemical Information and Modeling, 2015,55(10): 2085-2093. |
[83] | LAKE B M , SALAKHUTDINOV R , TENENBAUM J B . Human-level concept learning through probabilistic program induction[J]. Science, 2015,350(6266): 1332-1338. |
[84] | ALTAE-TRAN H , RAMSUNDAR B , PAPPU A S ,et al. Low data drug discovery with one-shot learning[J].Computer Science,2016,arXiv:1611.03199. Computer Science, 2016,arXiv:1611.03199. |
[85] | KUHN M , LETUNIC I , JENSEN L J ,et al. The SIDER database of drugs and side effects[J].Nucleic Acids Research,2015,44(D1):D1075. Nucleic Acids Research, 2015, 2015,44(D1):D1075. |
[86] | GóMEZ-BOMBARELLI R , DUVENAUD D,HERNáNDEZ-LOBATO J M ,et al. Automatic chemical design using a datadriven continuous representation of molecules[J]. Computer Science, 2016,1610.02415. |
[87] | SEGLER M H S , KOGEJ T , TYRCHAN C ,et al. Generating focussed molecule libraries for drug discovery with recurrent neural networks[J]. Computer Science, 2017,arXiv:1701.01329. |
[1] | 王皓, 潘昱杉, 潘毅. 生成式人工智能大模型赋能的元宇宙生命体:前瞻和挑战[J]. 大数据, 2023, 9(3): 85-96. |
[2] | 邓钇敏, 张旭龙, 司世景, 王健宗, 肖京. 虚拟人形象合成技术综述[J]. 大数据, 2023, 9(3): 114-139. |
[3] | 李婧文, 李雅文. 算法应用风险与治理研究[J]. 大数据, 2023, 9(3): 140-149. |
[4] | 贺亚运, 彭俊清, 王健宗, 肖京. 节奏舞者:基于关键动作转换图和有条件姿态插值网络的3D舞蹈生成方法研究[J]. 大数据, 2023, 9(1): 23-37. |
[5] | 沈阳, 余梦珑. 元宇宙与大数据:时空智能中的数据洞察与价值连接[J]. 大数据, 2023, 9(1): 103-110. |
[6] | 崔雨萌, 王靖亚, 闫尚义, 陶知众. 基于深度学习的警情记录关键信息自动抽取[J]. 大数据, 2022, 8(6): 127-142. |
[7] | 朱智韬, 司世景, 王健宗, 肖京. 联邦推荐系统综述[J]. 大数据, 2022, 8(4): 105-132. |
[8] | 王杰, 张松岩, 梁吉业. 融合一致性正则与流形正则的半监督深度学习算法[J]. 大数据, 2022, 8(3): 103-114. |
[9] | 徐康庭, 宋威. 结合语言知识和深度学习的中文文本情感分析方法[J]. 大数据, 2022, 8(3): 115-127. |
[10] | 赵智韬, 赵理君, 张正, 唐娉. 基于容器云技术的典型遥感智能解译算法集成[J]. 大数据, 2022, 8(2): 58-74. |
[11] | 张凯, 车漾. 基于分布式缓存加速容器化深度学习的优化方法[J]. 大数据, 2021, 7(5): 150-163. |
[12] | 温景熙, 于胡飞, 辛江, 唐艳. 基于深度学习的大脑性别差异分析[J]. 大数据, 2021, 7(4): 130-140. |
[13] | 彭鑫, 陈驰, 林云. 基于上下文的智能化代码复用推荐[J]. 大数据, 2021, 7(1): 37-47. |
[14] | 王丽会, 秦永彬. 深度学习在医学影像中的研究进展及发展趋势[J]. 大数据, 2020, 6(6): 83-104. |
[15] | 夏正勋,杨一帆,罗圣美,赵大超,张燕,唐剑飞. 生成技术在人工智能平台中的应用探索[J]. 大数据, 2020, 6(6): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|