Telecommunications Science ›› 2022, Vol. 38 ›› Issue (7): 1-17.doi: 10.11959/j.issn.1000-0801.2022154
• Review • Next Articles
Shanzhi CHEN
Revised:
2022-06-30
Online:
2022-07-20
Published:
2022-07-01
Supported by:
CLC Number:
Shanzhi CHEN. Critical thinking and suggestions on C-V2X with the developments of intelligent connected vehicles[J]. Telecommunications Science, 2022, 38(7): 1-17.
"
通信对象与场景 | 时变无线传播环境 | 通信信道 | 通信业务特点 | 通信频度 | 时延与可靠性的业务要求 | |
蜂窝移动通信网 | 以人为主向物拓展,80%为静止或低速移动 | 基站天线高(约20 m) | 点对多点共享(基站集中控制,基站对多个终端) | 点对点为主,广域通信为主 | 多为低频度通信 | 要求不一,大部分业务对时延和可靠性容忍 |
车联网 | 车及周边交通元素,80%为高速移动 | V2V、V2P、V2I 等直接通信时车间遮挡及多个移动反射体。V2I路侧设备约7 m高度 | 多点对多点共享(分布式控制,多车对多车) | V2N与蜂窝通信一样,但V2V、V2I和V2P属局域多点对多点并发通信 | 通信频度高(发送10次/(车·s)以上状态信息) | V2N对时延和可靠性容忍,但V2V、V2I 和V2P 对时延和可靠性要求苛刻 |
"
通信方式 | 接口 | 信令建立连接 | 用户数据 | 控制方式 | 支持业务例子 | 业务特征 | 频谱 | 5G 网络切片 |
蜂窝通信 | Uu | 需要 | 远程信息服务(经基站转发,长距离通信) | 集中式 | 基于V2N的地图下载、信息娱乐等应用 | 大带宽、时延不敏感业务 | 电信运营商的4G/5G频段 | 支持更佳 |
短距直通通信 | PC5 | 无须 | 车与车、车与路间的近程数据实时交互 | 集中式(基站覆盖内)或分布式(基站覆盖范围内或外) | 基 于 V2V、V2I、V2P的道路安全业务 | 低时延、高可靠通信业务 | 智能交通系统(ITS)专用频段(5.9 GHz) | 无须 |
注:Uu为基站与终端(手机)间的无线链路(含上行(uplink)、下行(downlink)),PC5为终端间的直通无线链路(sidelink) |
"
车内网 | 车云网 | 车际网 | |
定义 | 汽车内部的通信网络 | 车与云(应用平台)间通信,也称车载移动互联网 | 车与相邻的车、路、人等之间的短距实时通信 |
支撑业务与应用 | 实现整车内部控制系统与各检测和执行部件间的数据通信 | 远程信息服务,实现远程诊断和车辆调度、交通流量疏导、软件升级、信息娱乐服务 | 近程数据交互,提升道路安全和交通效率,节能减排 |
通信技术 | 控制器局域网络(controller area network,CAN)、车载以太网(automotive ethernet) | 3G/4G/5G、卫星通信C-V2X (4G/5G Uu) | C-V2X(PC5)、DSRC(IEEE 802.11p) |
特征 | 实时性、可靠性 | 对通信时延与可靠性没有高要求,信息娱乐时需要大带宽 | 低时延、高可靠 |
"
物联网 | 车联网 | |
通信终端类型 | 种类多(消费类、工业类、环保及公共安全类等) | 车、路、人等 |
通信终端是否移动(运动) | 绝大部分静止 | 终端(汽车)工作时运动 |
通信频度 | 低,物联网终端大部分时间处于休眠状态 | 高,单车的道路安全业务通信频度10次/s以上 |
通信对象的物理范围 | 不同应用,短距和广域均有 | V2N是广域通信,但V2V、V2I、V2P间属局部通信(道路安全业务,通信对象约1 km范围内信息有价值) |
功耗 | 超低功耗,单个电池运行多年,或能量自给(如震动能、光能、热能和射频能) | 相对不敏感 |
通信时延 | 不同应用,要求不一。大部分业务要求不高 | V2V、V2I、V2P要求低时延(道路安全要求毫秒级) |
通信可靠性 | 大部分业务要求不高 | 高,超过99% |
安全性 | 不同应用不同 | 高(涉及生命安全) |
"
应用类别 | 主要应用场景 | 地理范围 | 应用案例 | 通信要求 | 通信接口 |
V2V | 道路安全,车辆编队等增强应用 | 局部 | 主动安全:盲区感知、变道辅助、高优先权车辆紧急通行 | 实时、可靠性要求高 | PC5 |
V2I | 道路安全、交通效率 | 局部与区域 | 微观交通:交通信号灯信息及车速引导,高速公路突发事故、临时施工,危险路段(匝道、隧道等) | 实时、可靠性要求高 | |
V2P | 弱势交通参与者(行人、摩托车、自行车)道路安全 | 局部 | 行人穿行路口等 | 实时、可靠性要求高 | |
V2N | 交通效率 | 全局 | 宏观交通:交通信号全局优化、行车路径规划、流量疏导 | 非实时、可靠性要求不高 | Uu |
远程监管与维护 | 车辆远程诊断和维护,两客一危一重的远程监管 | 非实时、可靠性要求不高 | |||
自动驾驶 | 高清地图下载 | 时延容忍 | |||
信息娱乐 | 视频娱乐 | 大带宽,但非实时、可靠性要求不高 |
[1] | 陈山枝, 胡金玲 ,等. 蜂窝车联网(C-V2X)[M]. 北京: 人民邮电出版社, 2021. |
CHEN S Z , HU J L , et al . Cellular vehicle-to-everything (C-V2X)[M]. Beijing: Posts and Telecom Press, 2021. | |
[2] | 新华社.. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[J]. 中国水利, 2021(6): 1-38. |
Xinhua News Agency. The outline of the 14th five-year plan (2021—2025) for national economic and social development and the long-range objectives through the year 2035 of P.R.China[J]. China Water Resources, 2021(6): 1-38. | |
[3] | ZTE. 5GAA A-180008,Latency evaluation for 5GAA architecture[EB]. 2017. |
[4] | 大唐电信副总裁陈山枝:未来积极推动LTE-V 标准[EB]. 2013. |
Datang Telecom vice president Chen Shanzhi:actively promote LTE-V standard in the future[EB]. 2013. | |
[5] | FCC. FCC moderhizes 5.9 GHz band to improve Wi-Fi and automotive safety[Z]. 2020. |
[6] | SAE standards development[EB]. 2022. |
[7] | 肖瑶, 刘会衡, 程晓红 . 车联网关键技术及其发展趋势与挑战[J]. 通信技术, 2021,54(1): 1-8. |
XIAO Y , LIU H H , CHENG X H . Key technologies of Internet of vehicles and their development trends and challenges[J]. Communications Technology, 2021,54(1): 1-8. | |
[8] | 5G Americas. V2X cellular solutions[R]. 2016. |
[9] | CHEN S Z , HU J L , SHI Y ,et al. LTE-V:a TD-LTE-based V2X solution for future vehicular network[J]. IEEE Internet of Things Journal, 2016,3(6): 997-1005. |
[10] | CHEN S Z , HU J L , SHI Y ,et al. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G[J]. IEEE Communications Standards Magazine, 2017,1(2): 70-76. |
[11] | CHEN S Z , HU J L , SHI Y ,et al. A vision of C-V2X:technologies,field testing,and challenges with Chinese development[J]. IEEE Internet of Things Journal, 2020,7(5): 3872-3881. |
[12] | 陈山枝, 胡金玲, 时岩 ,等. LTE-V2X车联网技术、标准与应用[J]. 电信科学, 2018,34(4): 1-11. |
CHEN S Z , HU J L , SHI Y ,et al. Technologies,standards and applications of LTE-V2X for vehicular networks[J]. Telecommunications Science, 2018,34(4): 1-11. | |
[13] | 陈山枝, 时岩, 胡金玲 . 蜂窝车联网(C-V2X)综述[J]. 中国科学基金, 2020,34(2): 179-185. |
CHEN S Z , SHI Y , HU J L . Cellular vehicle to everything (C-V2X):a review[J]. Bulletin of National Natural Science Foundation of China, 2020,34(2): 179-185. | |
[14] | 5GAA. The case for cellular V2X for safety and cooperative driving[Z]. 2016. |
[15] | NGMN Alliance V2X Task-Force. Liaison statement on technology evaluation of LTE-V2X and DSRC[Z]. 2017. |
[16] | 5G Americas. White paper:cellular V2X communications towards 5G[R]. 2018. |
[17] | ZAGAJAC J The C-V2X proposition[Z]. 2018. |
[18] | BAZZI A , CECCHINI G , MENARINI M ,et al. Survey and perspectives of vehicular Wi-Fi versus sidelink cellular-V2X in the 5G era[J]. Future Internet, 2019,11(6): 122. |
[19] | 十部门关于印发《5G应用“扬帆”行动计划(2021-2023年)》的通知[EB]. 2021. |
Ten government bodies released 5G Application ‘Sailing’ Action Plan (2021-2023)[EB]. 2021. | |
[20] | 陈山枝 . 车联网是 5G 最大规模的单体应用场景[J]. 数据通信, 2018(5): 12. |
CHEN S Z . C-V2X is the largest single application scenario of 5G[J]. Data Communication, 2018(5): 12. | |
[21] | HARDING J , POWELL G R , YOON R ,et al. Vehicle-to-vehicle communications:Readiness of V2V technology for application[R]. 2014. |
[22] | SINGH S . Critical reasons for crashes investigated in the National Motor Vehicle Crash Causation Survey[R]. 2018. |
[23] | National Transportation Safety Board. Vehicle- and infrastructure-based technology for the prevention of rear-end collisions[EB]. 2001. |
[24] | 尤瓦尔·赫拉利 . 人类简史:从动物到上帝[M]. 林俊宏,译. 北京: 中信出版社, 2017. |
YUVAL N H . Sapiens:a brief history of humankind[M]. Translated by LIN J H. Beijing: CITIC Press, 2017. | |
[25] | WISCH M , HELLMANN A , LERNER M ,et al. Car-to-car accidents at intersections in Europe and identification of use cases for the test and assessment of respective active vehicle safety systems[C]// Proceedings of the 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV).[S.l.:s.n.], 2019: 1-27. |
[26] | National Highway Traffic Safety Administration. Traffic safety facts annual report tables[R]. 2018. |
[27] | 国家综合立体交通网规划纲要[EB]. 2021. |
Outline of the national comprehensive three-dimensional transportation network plan[EB]. 2021. | |
[28] | TIENTRAKOOL P , HO Y C , MAXEMCHUK N F . Highway capacity benefits from using vehicle-to-vehicle communication and sensors for collision avoidance[C]// Proceedings of 2011 IEEE Vehicular Technology Conference. Piscataway:IEEE Press, 2011: 1-5. |
[29] | 陈山枝, 葛雨明, 时岩 . 蜂窝车联网(C-V2X)技术发展、应用及展望[J]. 电信科学, 2022,38(1): 1-12. |
CHEN S Z , GE Y M , SHI Y . Technology development,application and prospect of cellular vehicle-to-everything(C-V2X)[J]. Telecommunications Science, 2022,38(1): 1-12. | |
[30] | TCG. 中国汽车工程学会[M]. 北京: 机械工业出版社, 2021. |
China Society of Automotive Engineers. Energy saving and new energy vehicle technology roadmap 2.0[M]. Beijing: China Machine Press, 2021. |
[1] | Yan WANG, Ying PENG. Research on 6G standardization of International Telecommunications Union(ITU) [J]. Telecommunications Science, 2023, 39(6): 129-138. |
[2] | Chen ZHANG, Hongkai WANG, Dong MAO, Sichen PAN, Shuai ZHAO. Research and application of 5G lightweight hardware encryption module for power terminals [J]. Telecommunications Science, 2023, 39(6): 159-169. |
[3] | Hao XU, Lin WU. Research on VoWi-Fi interoperability based on 5G network [J]. Telecommunications Science, 2023, 39(5): 144-154. |
[4] | Jianbin WANG, Shuchun WANG, Shangjin LIAO, Shuyuan SHI. Research on 5G base station energy saving system based on DCNN-LSTM load prediction algorithm [J]. Telecommunications Science, 2023, 39(4): 133-141. |
[5] | Le ZHANG, Hongyuan MA. Practice on edge cloud security of telecom operators [J]. Telecommunications Science, 2023, 39(4): 165-172. |
[6] | Siyang LIU, Yunfei ZHANG. From ICV 1.0 to ICV 2.0: real-time digital twin city construction for the coordinated development of ICV and smart city [J]. Telecommunications Science, 2023, 39(3): 32-44. |
[7] | Kun WANG, Zhenjiang DONG, Fan YANG, Guyue ZHOU. Key technologies and applications of C-V2X based vehicle-infrastructure cooperative autonomous driving [J]. Telecommunications Science, 2023, 39(3): 45-60. |
[8] | Dongsheng WU, Fengna LI, Ningxin XIA, Dacheng LI. Research and prospect of intelligent connected vehicle test scheme [J]. Telecommunications Science, 2023, 39(3): 61-69. |
[9] | Guanghai LIU, Tian XIAO, Bei LI, Xinzhou CHENG, Yongbei XUE, Yi LI, Xiaomeng ZHU, Yuting ZHENG. Research on 5G service coverage capability before 4G carrier re-farming to 5G [J]. Telecommunications Science, 2023, 39(3): 115-123. |
[10] | Chuanbing GONG, Mingshuai YANG, Song WU, Haiping GE, Shouguo ZHANG, Lei LIU, Yunshan QI, Hui XU. Research on the application of site value evaluation model [J]. Telecommunications Science, 2023, 39(1): 100-107. |
[11] | Mengzhe ZHANG, Yijun XIA. Status quo, problem and promotion suggestions of 5G application in industrial field [J]. Telecommunications Science, 2023, 39(1): 126-135. |
[12] | Hongyuan MA, Wei ZHOU, Yan FU, Yongping SHAO, Dan LI. Discussion on the evolution of architecture of the core network of cellular Internet of things [J]. Telecommunications Science, 2023, 39(1): 153-161. |
[13] | Pengfei SUN, Li LIN, Zhe SI. Methodology and standardised competence construction of 5GtoB scaled replication [J]. Telecommunications Science, 2022, 38(Z1): 3-10. |
[14] | Feng PAN, Jiawei LIU. Evolution and prospect of 5GtoB application in China [J]. Telecommunications Science, 2022, 38(Z1): 11-16. |
[15] | Shiying ZHENG, Yuan LI, Bohan YANG, Shuai MA, Shanpeng XIAO. Technology evolution and industry development of 5G + industrial proximity network [J]. Telecommunications Science, 2022, 38(Z1): 17-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|