通信学报 ›› 2021, Vol. 42 ›› Issue (9): 54-64.doi: 10.11959/j.issn.1000-436x.2021168

• 学术论文 • 上一篇    下一篇

基于差分隐私的轨迹隐私保护方案

陈思1,2, 付安民1,3, 苏铓1, 孙怀江1   

  1. 1 南京理工大学计算机科学与工程学院,江苏 南京 210094
    2 南京理工大学后勤服务中心,江苏 南京 210094
    3 中国科学院信息工程研究所,北京 100093
  • 修回日期:2021-03-21 出版日期:2021-09-25 发布日期:2021-09-01
  • 作者简介:陈思(1987− ),女,湖北襄阳人,南京理工大学博士生,主要研究方向为大数据、隐私保护等
    付安民(1981− ), 男,湖北咸宁人,博士,南京理工大学教授,主要研究方向为物联网安全、机器学习与隐私保护等
    苏铓(1987− ),女,内蒙古翁牛特旗人,博士,南京理工大学副教授,主要研究方向为云安全、访问控制与权限管理等
    孙怀江(1968− ),男,陕西西安人,博士,南京理工大学教授,主要研究方向为神经网络与机器学习等
  • 基金资助:
    国家自然科学基金资助项目(62072239);信息安全国家重点实验室开放基金资助项目(2021-MS-07);中央高校基本科研业务费专项资金资助项目(30920021129);中国高等教育学会“高等教育信息化研究”专项课题基金资助项目(2020XXHD06)

Trajectory privacy protection scheme based on differential privacy

Si CHEN1,2, Anmin FU1,3, Mang SU1, Huaijiang SUN1   

  1. 1 School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    2 Logistics Service Center, Nanjing University of Science and Technology, Nanjing 210094, China
    3 Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
  • Revised:2021-03-21 Online:2021-09-25 Published:2021-09-01
  • Supported by:
    The National Natural Science Foundation of China(62072239);Open Foundation of the State Key Laboratory of Information Security of China(2021-MS-07);The Fundamental Research Funds for the Central Universities(30920021129);Special Project of “Higher Education Informatization Research” of China Higher Education Association(2020XXHD06)

摘要:

为了解决现有采样机制和数据混淆方法容易导致公开发布的轨迹数据可用性较低和隐私保护不足的问题,提出了一种基于差分隐私的轨迹隐私保护方案。该方案通过建立新的基于时间泛化和空间分割的高效采样模型,并利用k-means聚类算法进行抽样数据处理,同时借助差分隐私保护机制对轨迹数据进行双重扰动,有效解决了具有强大背景知识的攻击者窃取用户隐私的问题。同时,为适应轨迹数据查询范围的误差边界,设计了有效的数据发布预判机制,保证了发布的轨迹数据的精度。仿真结果表明,与现有的轨迹差分隐私保护方法相比,所提方案在处理效率、隐私保护强度和数据可用性等方面具有明显的优势。

关键词: 差分隐私, 轨迹隐私, 数据采样, 指数机制, 数据发布

Abstract:

To solve the problem that the current sampling mechanism and data obfuscation method may raise insufficient data availability and privacy protection, a trajectory privacy protection scheme based on differential privacy was proposed.A new efficient sampling model based on time generalization and spatial segmentation was presented, and a k-means clustering algorithm was designed to process sampling data.By employing the differential privacy mechanism, the trajectory data was disturbed to solve the user privacy leaking problem caused by the attacker with powerful background knowledge.Simultaneously, to respond to the error boundary of the query range of pandemic, an effective prediction mechanism was designed to ensure the availability of released public track data.Simulation results demonstrate that compared with the existing trajectory differential privacy protection methods, the proposed scheme has obvious advantages in terms of processing efficiency, privacy protection intensity, and data availability.

Key words: differential privacy, trajectory privacy, data sampling, exponential mechanism, data publishing

中图分类号: 

No Suggested Reading articles found!