通信学报 ›› 2022, Vol. 43 ›› Issue (5): 1-13.doi: 10.11959/j.issn.1000-436x.2022082
• 学术论文 • 下一篇
张勇, 李丹丹, 韩璐, 黄小红
修回日期:
2022-03-02
出版日期:
2022-05-25
发布日期:
2022-05-01
作者简介:
张勇(1990- ),男,河北衡水人,北京邮电大学博士生,主要研究方向为区块链、大数据交易和数据隐私保护等基金资助:
Yong ZHANG, Dandan LI, Lu HAN, Xiaohong HUANG
Revised:
2022-03-02
Online:
2022-05-25
Published:
2022-05-01
Supported by:
摘要:
为解决群体感知数据交易模式下参与者数据隐私泄露的问题,提出了一种隐私保护的群体感知数据交易算法。首先,为实现对参与者的隐私保护,设计了基于差分隐私的聚合方案,参与者不再需要上传原始数据,而是按照任务需求对收集的数据进行分析和计算,将任务结果按照平台分配的隐私预算添加噪声后发送给平台;其次,为确保参与者的可信性,构建了参与者的信誉模型;最后,为激励消费者和参与者参与交易,在考虑消费者对结果偏差的容忍约束和参与者的隐私泄露补偿的基础上构建了交易优化模型以优化平台的收益,并给出了基于遗传算法的收益优化算法(POA)来求解该模型。仿真结果表明,POA不仅保护了参与者的隐私,而且在平台的收益方面相比于VENUS和DPDT分别提高了29.27%和20.45%。
中图分类号:
张勇, 李丹丹, 韩璐, 黄小红. 隐私保护的群体感知数据交易算法[J]. 通信学报, 2022, 43(5): 1-13.
Yong ZHANG, Dandan LI, Lu HAN, Xiaohong HUANG. Privacy-protected crowd-sensed data trading algorithm[J]. Journal on Communications, 2022, 43(5): 1-13.
[1] | DAI W Q , DAI C K , CHOO K K R ,et al. SDTE:a secure blockchain-based data trading ecosystem[J]. IEEE Transactions on Information Forensics and Security, 2020,15: 725-737. |
[2] | HUANG Y D , ZENG Y M , YE F ,et al. Fair and protected profit sharing for data trading in pervasive edge computing environments[C]// Proceedings of IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2020: 1718-1727. |
[3] | WANG X D , YING C H , LUO Y . Privacy-friendly decentralized data aggregation for mobile crowdsensing[C]// Proceedings of 2020 IEEE Global Communications Conference. Piscataway:IEEE Press, 2020: 1-6. |
[4] | YU J L , CHEUNG M H , HUANG J W ,et al. Mobile data trading:behavioral economics analysis and algorithm design[J]. IEEE Journal on Selected Areas in Communications, 2017,35(4): 994-1005. |
[5] | YANG G , HE S B , SHI Z G ,et al. Promoting cooperation by the social incentive mechanism in mobile crowdsensing[J]. IEEE Communications Magazine, 2017,55(3): 86-92. |
[6] | 杜小勇, 陈峻, 陈跃国 . 大数据探索式搜索研究[J]. 通信学报, 2015,36(12): 77-88. |
DU X Y , CHEN J , CHEN Y G . Exploratory search on big data[J]. Journal on Communications, 2015,36(12): 77-88. | |
[7] | AN B Y , XIAO M J , LIU A ,et al. Truthful crowdsensed data trading based on reverse auction and blockchain[C]// Database Systems for Advanced Applications,Berlin:Springer, 2019: 292-309. |
[8] | ZHENG Z Z , PENG Y Q , WU F ,et al. Trading data in the crowd:profit-driven data acquisition for mobile crowdsensing[J]. IEEE Journal on Selected Areas in Communications, 2017,35(2): 486-501. |
[9] | JIANG C K , GAO L , DUAN L J ,et al. Scalable mobile crowdsensing via peer-to-peer data sharing[J]. IEEE Transactions on Mobile Computing, 2018,17(4): 898-912. |
[10] | ZHENG Y F , DUAN H Y , YUAN X L ,et al. Privacy-aware and efficient mobile crowdsensing with truth discovery[J]. IEEE Transactions on Dependable and Secure Computing, 2020,17(1): 121-133. |
[11] | ZHANG L , LI Y N , XIAO X ,et al. CrowdBuy:privacy-friendly image dataset purchasing via crowdsourcing[C]// Proceedings of IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2018: 2735-2743. |
[12] | GAO W C , YU W , LIANG F ,et al. Privacy-preserving auction for big data trading using homomorphic encryption[J]. IEEE Transactions on Network Science and Engineering, 2020,7(2): 776-791. |
[13] | NIU C Y , ZHENG Z Z , WU F ,et al. Achieving data truthfulness and privacy preservation in data markets[J]. IEEE Transactions on Knowledge and Data Engineering, 2019,31(1): 105-119. |
[14] | ZHAO Y Q , YU Y , LI Y N ,et al. Machine learning based privacy-preserving fair data trading in big data market[J]. Information Sciences, 2019,478: 449-460. |
[15] | WANG J , WANG Y L , ZHAO G S ,et al. Location protection method for mobile crowd sensing based on local differential privacy preference[J]. Peer-to-Peer Networking and Applications, 2019,12(5): 1097-1109. |
[16] | XUE Q , ZHU Y W , WANG J . Mean estimation over numeric data with personalized local differential privacy[J]. Frontiers of Computer Science, 2021,16(3): 1-10. |
[17] | 付钰, 俞艺涵, 吴晓平 . 大数据环境下差分隐私保护技术及应用[J]. 通信学报, 2019,40(10): 157-168. |
FU Y , YU Y H , WU X P . Differential privacy protection technology and its application in big data environment[J]. Journal on Communications, 2019,40(10): 157-168. | |
[18] | 郭艺, 叶剑, 张鹏 . 基于偏差约减的大数据交易模型分析与修复方法[J]. 电子学报, 2018,46(7): 1754-1761. |
GUO Y , YE J , ZHANG P . Analysis and repair of big data transaction model based on deviation reduction[J]. Acta Electronica Sinica, 2018,46(7): 1754-1761. | |
[19] | YU H F , ZHANG M X . Data pricing strategy based on data quality[J]. Computers & Industrial Engineering, 2017,112: 1-10. |
[20] | JIAO Y T , WANG P , NIYATO D ,et al. Profit maximization auction and data management in big data markets[C]// Proceedings of 2017 IEEE Wireless Communications and Networking Conference. Piscataway:IEEE Press, 2017: 1-6. |
[21] | 黄小红, 张勇, 闪德胜 ,等. 基于多目标效用优化的分布式数据交易算法[J]. 通信学报, 2021,42(2): 52-63. |
HUANG X H , ZHANG Y , SHAN D S ,et al. Distributed data trading algorithm based on multi-objective utility optimization[J]. Journal on Communications, 2021,42(2): 52-63. | |
[22] | ZHANG J X , SUN J C , ZHANG R ,et al. Privacy-preserving social media data outsourcing[C]// Proceedings of IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2018: 1106-1114. |
[23] | CAI H , YE F , YANG Y Y ,et al. Towards privacy-preserving data trading for web browsing history[C]// Proceedings of the International Symposium on Quality of Service. Piscataway:IEEE Press, 2019: 1-10. |
[24] | YANG L , ZHANG M Y , HE S B ,et al. Crowd-empowered privacy-preserving data aggregation for mobile crowdsensing[C]// Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York:ACM Press, 2018: 151-160. |
[25] | DWORK C , . Differential privacy[C]// Automata,Languages and Programming. Berlin:Springer, 2006: 1-12. |
[26] | KEMP F . The Laplace distribution and generalizations:a revisit with applications to communications,economics,engineering,and finance[J]. Journal of the Royal Statistical Society:Series D (the Statistician), 2003,52(4): 698-699. |
[27] | DANDEKAR P , FAWAZ N , IOANNIDIS S . Privacy auctions for recommender systems[C]// Internet and Network Economics. Berlin:Springer, 2012: 309-322. |
[28] | JIN H M , SU L , XIAO H P ,et al. INCEPTION:incentivizing privacy-preserving data aggregation for mobile crowd sensing systems[C]// Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York:ACM Press, 2016: 341-350. |
[29] | MENG C S , JIANG W J , LI Y L ,et al. Truth discovery on crowd sensing of correlated entities[C]// Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. New York:ACM Press, 2015: 169-182. |
[30] | KAZAI G , KAMPS J , MILIC-FRAYLING N , . An analysis of human factors and label accuracy in crowdsourcing relevance judgments[J]. Information Retrieval, 2013,16(2): 138-178. |
[31] | STRUBELL E , GANESH A , MCCALLUM A . Energy and policy considerations for modern deep learning research[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020,34(9): 13693-13696. |
[32] | WANG L Y , ZHANG D Q , YAN Z X ,et al. effSense:a novel mobile crowd-sensing framework for energy-efficient and cost-effective data uploading[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2015,45(12): 1549-1563. |
[33] | 汪民乐 . 遗传算法的收敛性研究[J]. 计算技术与自动化, 2015,34(1): 58-62. |
WANG M L . Research on convergence of genetic algorithm[J]. Computing Technology and Automation, 2015,34(1): 58-62. | |
[34] | GAO G J , XIAO M J , WU J ,et al. DPDT:a differentially private crowd-sensed data trading mechanism[J]. IEEE Internet of Things Journal, 2020,7(1): 751-762. |
[35] | CAI H , ZHU Y M , LI J ,et al. A profit-maximizing mechanism for query-based data trading with personalized differential privacy[J]. The Computer Journal, 2020,64(2): 264-280. |
[36] | ZHENG S Y , CAO Y , YOSHIKAWA M . Trading data with personalized differential privacy and partial arbitrage freeness[J]. arXiv Preprint,arXiv:2105.01651, 2021. |
[1] | 冯涛, 陈李秋, 方君丽, 石建明. 基于本地化差分隐私和属性基可搜索加密的区块链数据共享方案[J]. 通信学报, 2023, 44(5): 224-233. |
[2] | 余晟兴, 陈泽凯, 陈钟, 刘西蒙. DAGUARD:联邦学习下的分布式后门攻击防御方案[J]. 通信学报, 2023, 44(5): 110-122. |
[3] | 张淑芬, 董燕灵, 徐精诚, 王豪石. 基于目标扰动的AdaBoost算法[J]. 通信学报, 2023, 44(2): 198-209. |
[4] | 汤凌韬, 王迪, 刘盛云. 面向非独立同分布数据的联邦学习数据增强方案[J]. 通信学报, 2023, 44(1): 164-176. |
[5] | 袁程胜, 郭强, 付章杰. 基于差分隐私的深度伪造指纹检测模型版权保护算法[J]. 通信学报, 2022, 43(9): 181-193. |
[6] | 王瀚仪, 李效光, 毕文卿, 陈亚虹, 李凤华, 牛犇. 多级本地化差分隐私算法推荐框架[J]. 通信学报, 2022, 43(8): 52-64. |
[7] | 康海燕, 冀源蕊. 基于本地化差分隐私的联邦学习方法研究[J]. 通信学报, 2022, 43(10): 94-105. |
[8] | 晏燕, 丛一鸣, Adnan Mahmood, 盛权政. 基于深度学习的位置大数据统计发布与隐私保护方法[J]. 通信学报, 2022, 43(1): 203-216. |
[9] | 陈思, 付安民, 苏铓, 孙怀江. 基于差分隐私的轨迹隐私保护方案[J]. 通信学报, 2021, 42(9): 54-64. |
[10] | 李洪涛, 任晓宇, 王洁, 马建峰. 基于差分隐私的连续位置隐私保护机制[J]. 通信学报, 2021, 42(8): 164-175. |
[11] | 蔡剑平, 刘西蒙, 熊金波, 应作斌, 吴英杰. 差分隐私下多重一致性约束问题的逼近方法[J]. 通信学报, 2021, 42(6): 107-117. |
[12] | 黄小红, 张勇, 闪德胜, 钱叶魁, 韩璐, 李丹丹, 丛群. 基于多目标效用优化的分布式数据交易算法[J]. 通信学报, 2021, 42(2): 52-63. |
[13] | 朱素霞, 刘抒伦, 孙广路. 基于相对熵和K-means的形状相似差分隐私轨迹保护机制[J]. 通信学报, 2021, 42(2): 113-123. |
[14] | 刘杨, 李珺, 陈文韵, 彭木根. 面向6G的雾无线接入网内生安全数据共享机制研究[J]. 通信学报, 2021, 42(1): 67-78. |
[15] | 赖英旭,薄尊旭,刘静. 基于改进PBFT算法防御区块链中sybil攻击的研究[J]. 通信学报, 2020, 41(9): 104-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|