通信学报 ›› 2022, Vol. 43 ›› Issue (1): 194-202.doi: 10.11959/j.issn.1000-436x.2022011

所属专题: 区块链

• 学术论文 • 上一篇    下一篇

基于深度学习的区块链蜜罐陷阱合约检测

张红霞, 王琪, 王登岳, 王奔   

  1. 中国石油大学(华东)青岛软件学院、计算机科学与技术学院,山东 青岛 266580
  • 修回日期:2022-01-05 出版日期:2022-01-25 发布日期:2022-01-01
  • 作者简介:张红霞(1981- ),女,山东东营人,博士,中国石油大学(华东)副教授、硕士生导师,主要研究方向为边缘计算、区块链技术、服务计算等
    王琪(1997- ),男,山东枣庄人,中国石油大学(华东)硕士生,主要研究方向为区块链技术、数据挖掘
    王登岳(1996- ),男,山东聊城人,中国石油大学(华东)硕士生,主要研究方向为网络与服务计算
    王奔(1997- ),男,山东临沂人,中国石油大学(华东)硕士生,主要研究方向为计算机视觉、多目标跟踪
  • 基金资助:
    中石油重大科技基金资助项目(ZD2019-183-004);中央高校基本科研业务费专项资金资助项目(20CX05019A)

Honeypot contract detection of blockchain based on deep learning

Hongxia ZHANG, Qi WANG, Dengyue WANG, Ben WANG   

  1. Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China
  • Revised:2022-01-05 Online:2022-01-25 Published:2022-01-01
  • Supported by:
    The Major Scientific and Technological Projects of CNPC(ZD2019-183-004);The Fundamental Research Funds for the Central Universities(20CX05019A)

摘要:

针对当前检测方法准确率不高以及模型泛化性较差的问题,提出了基于 KOLSTM 深度学习模型的蜜罐陷阱合约检测方法。首先,通过分析蜜罐陷阱合约的特点,提出了关键操作码的概念,并设计了可用于选取智能合约中关键操作码的关键词提取方法;其次,在传统的LSTM模型中加入关键操作码权重机制,构建了可以同时捕获蜜罐陷阱合约中隐藏的序列特征以及关键操作码特征的 KOLSTM 模型。最后,通过实验表明,该模型具有较高的识别精确率,在二分类和多分类检测场景下的F值较LightGBM模型分别提升2.39%与19.54%。

关键词: 区块链, 以太坊, 智能合约, 蜜罐陷阱合约, 深度学习

Abstract:

Aiming at the problems of low accuracy of current detection methods and poor generalization of model, a honeypot contract detection method based on KOLSTM deep learning model was proposed.Firstly, by analyzing the characteristics of honeypot contract, the concept of key opcode was proposed, and a keyword extraction method which could be used to select the key opcode in smart contract was designed.Secondly, by adding the key opcode weight mechanism to the traditional LSTM model, a KOLSTM model which could simultaneously capture the sequence features and key opcode features hidden in the honeypot contract was constructed.Finally, the experimental results show that the model had a high recognition accuracy.Compared with the existing methods, the F-score is improved by 2.39% and 19.54% respectively in the two classification and multi-classification detection scenes.

Key words: blockchain, Ethereum, smart contract, honeypot contract, deep learning

中图分类号: 

No Suggested Reading articles found!