通信学报 ›› 2022, Vol. 43 ›› Issue (5): 68-81.doi: 10.11959/j.issn.1000-436x.2022089
王晓丹, 李京泰, 宋亚飞
修回日期:
2022-03-23
出版日期:
2022-05-25
发布日期:
2022-05-01
作者简介:
王晓丹(1966- ),女,陕西汉中人,博士,空军工程大学教授,主要研究方向为智能信息处理、机器学习基金资助:
Xiaodan WANG, Jingtai LI, Yafei SONG
Revised:
2022-03-23
Online:
2022-05-25
Published:
2022-05-01
Supported by:
摘要:
针对基于卷积神经网络的图像隐写分析方法中使用人工设计的滤波器在特征提取过程中有效性低的问题,提出方向差分自适应组合(DDAC)特征提取方法。在计算中心像素与周围不同方向像素的差分后,使用 1× 1 卷积对方向差分进行线性组合。根据损失对组合参数自适应更新来构建多样化的滤波器,使获取的嵌入信息残差特征更有效。使用截断线性单元提高嵌入信息残差和图像信息残差的比率,加快模型收敛速度并提高残差特征提取能力。实验结果表明,该方法使 Ye-net、Yedroudj-net 模型的准确率在 WOW 和S-UNIWARD数据集中提高1.30%~8.21%。与固定和更新参数SRM滤波器方法相比,测试模型在不同隐写数据集中的准确率提高 0.60%~20.72%,并且训练过程更稳定。对比其他图像隐写分析模型,DDAC-net 具有更高的隐写分析效率。
中图分类号:
王晓丹, 李京泰, 宋亚飞. DDAC:面向卷积神经网络图像隐写分析模型的特征提取方法[J]. 通信学报, 2022, 43(5): 68-81.
Xiaodan WANG, Jingtai LI, Yafei SONG. DDAC: a feature extraction method for model of image steganalysis based on convolutional neural network[J]. Journal on Communications, 2022, 43(5): 68-81.
表1
不同结构的模型在测试集的准确率"
结构 | WOW | S-UNIWARD | |||
嵌入率为0.2 | 嵌入率为0.4 | 嵌入率为0.2 | 嵌入率为0.4 | ||
SRM方法 | 0.738 3 | 0.844 2 | 0.691 3 | 0.803 1 | |
结构1 | 0.775 9 | 0.870 3 | 0.718 3 | 0.845 2 | |
结构2 | 0.761 5 | 0.845 1 | 0.708 3 | 0.835 4 | |
结构3 | 0.756 9 | 0.857 7 | 0.689 2 | 0.823 4 | |
结构4 | 0.730 8 | 0.832 0 | 0.695 1 | 0.820 7 | |
结构5 | 0.732 7 | 0.846 1 | 0.685 0 | 0.810 4 | |
结构6 | 0.730 5 | 0.831 2 | 0.689 7 | 0.808 9 |
表4
Ye-net与Yedroudj-net使用DDAC后的模型准确率"
模型 | WOW | S-UNIWARD | |||
嵌入率为0.4 | 嵌入率为0.2 | 嵌入率为0.4 | 嵌入率为0.2 | ||
Ye-net | 0.7918 | 0.6749 | 0.7432 | 0.6296 | |
Ye-net+DDAC | 0.8135(+0.0217) | 0.7081(+0.0332) | 0.7645(+0.0213) | 0.6427(+0.0131) | |
Yedroudj-net | 0.8573 | 0.7495 | 0.7540 | 0.6264 | |
Yedroudj-net+DDAC | 0.8703(+0.0130) | 0.7743(+0.0248) | 0.8361(+0.0821) | 0.7019(+0.0755) |
表5
Ye-net与Yedroudj-net使用DDAC后的模型虚警率"
模型 | WOW | S-UNIWARD | |||
嵌入率为0.4 | 嵌入率为0.2 | 嵌入率为0.4 | 嵌入率为0.2 | ||
Ye-net | 0.1950 | 0.3272 | 0.2882 | 0.3570 | |
Ye-net+DDAC | 0.2166(+0.0216) | 0.2470(-0.0802) | 0.2250(-0.0632) | 0.3466(-0.0104) | |
Yedroudj-net | 0.1654 | 0.2978 | 0.2454 | 0.4980 | |
Yedroudj-net+DDAC | 0.1068(-0.0586) | 0.2372(-0.0606) | 0.1476(-0.0978) | 0.3042(-0.1938) |
表6
Ye-net与Yedroudj-net使用DDAC后的模型漏检率"
模型 | WOW | S-UNIWARD | |||
嵌入率为0.4 | 嵌入率为0.2 | 嵌入率为0.4 | 嵌入率为0.2 | ||
Ye-net | 0.2518 | 0.3386 | 0.2474 | 0.4000 | |
Ye-net+DDAC | 0.1590(-0.0928) | 0.3372(-0.0014) | 0.2536(+0.0062) | 0.3692(-0.0308) | |
Yedroudj-net | 0.1654 | 0.2160 | 0.3086 | 0.2500 | |
Yedroudj-net+DDAC | 0.1422(-0.0232) | 0.2232(+0.0072) | 0.1776(-0.1310) | 0.2982(+0.0482) |
表7
隐写分析模型在BOSSbase数据集上的准确率"
模型 | WOW | S-UNIWARD | |||
嵌入率为0.4 | 嵌入率为0.2 | 嵌入率为0.4 | 嵌入率为0.2 | ||
Ye-net | 0.791 8 | 0.674 9 | 0.743 2 | 0.629 6 | |
Ye-net+DDAC | 0.813 5 | 0.708 1 | 0.764 5 | 0.642 7 | |
Yedroudj-net | 0.857 3 | 0.749 5 | 0.754 0 | 0.626 4 | |
Yedroudj-net+DDAC | 0.870 3 | 0.774 3 | 0.836 1 | 0.701 9 | |
SRnet | 0.869 3 | 0.754 0 | 0.816 9 | 0.675 8 | |
SiaStegnet | 0.870 1 | 0.760 3 | 0.821 3 | 0.684 3 | |
Zhu-net | 0.881 6 | 0.767 1 | 0.847 3 | 0.715 0 | |
Hybrid-CNN | 0.774 0 | 0.547 0 | 0.919 0 | 0.503 0 | |
DDAC-net | 0.875 0 | 0.785 8 | 0.854 8 | 0.711 8 |
[1] | CHEDDAD A , CONDELL J , CURRAN K ,et al. Digital image steganography:survey and analysis of current methods[J]. Signal Processing, 2010,90(3): 727-752. |
[2] | 付章杰, 王帆, 孙星明 ,等. 基于深度学习的图像隐写方法研究[J]. 计算机学报, 2020,43(9): 1656-1672. |
FU Z J , WANG F , SUN X M ,et al. Research on steganography of digital images based on deep learning[J]. Chinese Journal of Computers, 2020,43(9): 1656-1672. | |
[3] | 陈君夫, 付章杰, 张卫明 ,等. 基于深度学习的图像隐写分析综述[J]. 软件学报, 2021,32(2): 551-578. |
CHEN J F , FU Z J , ZHANG W M ,et al. Review of image steganalysis based on deep learning[J]. Journal of Software, 2021,32(2): 551-578. | |
[4] | LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015,521(7553): 436-444. |
[5] | KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6): 84-90. |
[6] | HE K M , ZHANG X Y , REN S Q ,et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 770-778. |
[7] | RONNEBERGER O , FISCHER P , BROX T . U-net:convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Berlin:Springer, 2015: 234-241. |
[8] | HE K M , ZHANG X Y , REN S Q ,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9): 1904-1916. |
[9] | GOODFELLOW I J , POUGET-ABADIE J ,, MIRZA M , et al . Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2014: 2672-2680. |
[10] | YANG J H , RUAN D Y , HUANG J W ,et al. An embedding cost learning framework using GAN[J]. IEEE Transactions on Information Forensics and Security, 2020,15: 839-851. |
[11] | TANG W X , TAN S Q , LI B ,et al. Automatic steganographic distortion learning using a generative adversarial network[J]. IEEE Signal Processing Letters, 2017,24(10): 1547-1551. |
[12] | KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6): 84-90. |
[13] | TAN S Q , LI B . Stacked convolutional auto-encoders for steganalysis of digital images[C]// Proceedings of Signal and Information Processing Association Annual Summit and Conference (APSIPA). Piscataway:IEEE Press, 2014: 1-4. |
[14] | QIAN Y L , DONG J , WANG W ,et al. Deep learning for steganalysis via convolutional neural networks[C]// Proceedings of SPIE - The International Society for Optical Engineering. Bellingham:SPIE Press, 2015: 171-180. |
[15] | XU G S , WU H Z , SHI Y Q . Structural design of convolutional neural networks for steganalysis[J]. IEEE Signal Processing Letters, 2016,23(5): 708-712. |
[16] | YEDROUDJ M , COMBY F , CHAUMONT M . Yedroudj-net:an efficient CNN for spatial steganalysis[C]// Proceedings of 2018 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE Press, 2018: 2092-2096. |
[17] | YE J , NI J Q , YI Y . Deep learning hierarchical representations for image steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2017,12(11): 2545-2557. |
[18] | FRIDRICH J , KODOVSKY J . Rich models for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2012,7(3): 868-882. |
[19] | LI B , WEI W H , FERREIRA A ,et al. ReST-net:diverse activation modules and parallel subnets-based CNN for spatial image steganalysis[J]. IEEE Signal Processing Letters, 2018,25(5): 650-654. |
[20] | KALMAN B L , KWASNY S C . Why tanh:choosing a sigmoidal function[C]// Proceedings of International Joint Conference on Neural Networks. Piscataway:IEEE Press, 1992: 578-581. |
[21] | BOROUMAND M , CHEN M , FRIDRICH J . Deep residual network for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2019,14(5): 1181-1193. |
[22] | SZEGEDY C , IOFFE S , VANHOUCKE V ,et al. Inception-v4,inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. New York:ACM Press, 2017: 4278-4284. |
[23] | ZHANG R , ZHU F , LIU J Y ,et al. Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2020,15: 1138-1150. |
[24] | PEVNY T , BAS P , FRIDRICH J . Steganalysis by subtractive pixel adjacency matrix[J]. IEEE Transactions on Information Forensics and Security, 2010,5(2): 215-224. |
[25] | SUTSKEVER I , MARTENS J , DAHL G ,et al. On the importance of initialization and momentum in deep learning[C]// International Conference on Machine Learning. Saarland:DBLP, 2013: 1139-1147. |
[26] | IOFFE S , SZEGEDY C . Batch normalization:accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. Saarland:DBLP, 2015: 448-456. |
[27] | NAIR V , HINTON G E . Rectified linear units improve restricted boltzmann machines[C]// Proceedings of the 27th International Conference on Machine Learning. Saarland:DBLP, 2010: 807-814. |
[28] | BAS P , FILLER T , PEVNY T , . “Break our steganographic system”:the ins and outs of organizing BOSS[C]// Information Hiding. Berlin:Springer, 2011: 59-70. |
[29] | KODOVSKY J , FRIDRICH J , HOLUB V . Ensemble classifiers for steganalysis of digital media[J]. IEEE Transactions on Information Forensics and Security, 2012,7(2): 432-444. |
[30] | 沈军, 廖鑫, 秦拯 ,等. 基于卷积神经网络的低嵌入率空域隐写分析[J]. 软件学报, 2021,32(9): 2901-2915. |
SHEN J , LIAO X , QIN Z ,et al. Spatial steganalysis of low embedding rate based on convolutional neural network[J]. Journal of Software, 2021,32(9): 2901-2915. | |
[31] | YOU W K , ZHANG H , ZHAO X F . A siamese CNN for image steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2021,16: 291-306. |
[32] | ARIVAZHAGAN S , AMRUTHA E , SYLVIA L J W ,et al. Hybrid convolutional neural network architecture driven by residual features for steganalysis of spatial steganographic algorithms[J]. Neural Computing and Applications, 2021,33(17): 11465-11485. |
[33] | QIAN Y L , DONG J , WANG W ,et al. Learning and transferring representations for image steganalysis using convolutional neural network[C]// Proceedings of 2016 IEEE International Conference on Image Processing. Piscataway:IEEE Press, 2016: 2752-2756. |
[1] | 江沸菠, 彭于波, 董莉. 面向6G的深度图像语义通信模型[J]. 通信学报, 2023, 44(3): 198-208. |
[2] | 李昂, 陈建新, 魏昕, 周亮. 面向6G的跨模态信号重建技术[J]. 通信学报, 2022, 43(6): 28-40. |
[3] | 兰巨龙, 朱棣, 李丹. 面向多模态网络业务切片的虚拟网络功能资源容量智能预测方法[J]. 通信学报, 2022, 43(6): 143-155. |
[4] | 廖育荣, 王海宁, 林存宝, 李阳, 方宇强, 倪淑燕. 基于深度学习的光学遥感图像目标检测研究进展[J]. 通信学报, 2022, 43(5): 190-203. |
[5] | 张帆, 黄赟, 方子茁, 郭威. 卷积神经网络的损失最小训练后参数量化方法[J]. 通信学报, 2022, 43(4): 114-122. |
[6] | 朱政宇, 侯庚旺, 黄崇文, 孙钢灿, 郝万明, 梁静. 基于并行CNN的RIS辅助D2D保密通信系统资源分配算法[J]. 通信学报, 2022, 43(3): 172-179. |
[7] | 来杰, 王晓丹, 向前, 宋亚飞, 权文. 自编码器及其应用综述[J]. 通信学报, 2021, 42(9): 218-230. |
[8] | 安泽亮, 张天骐, 马宝泽, 邓盼, 徐雨晴. 基于一维CNN的多入多出OSTBC信号协作调制识别[J]. 通信学报, 2021, 42(7): 84-94. |
[9] | 王洪雁, 张莉彬, 陈国强, 汪祖民, 管志远. 结合粒子滤波及度量学习的目标跟踪方法[J]. 通信学报, 2021, 42(5): 98-110. |
[10] | 司念文, 张文林, 屈丹, 常禾雨, 李盛祥, 牛铜. 基于对抗补丁的可泛化的Grad-CAM攻击方法[J]. 通信学报, 2021, 42(3): 23-35. |
[11] | 高红民, 曹雪莹, 陈忠昊, 花再军, 李臣明, 陈月. 基于多尺度近端特征拼接网络的高光谱图像分类方法[J]. 通信学报, 2021, 42(2): 92-102. |
[12] | 肖利民,徐向荣,韦壮焜,刘圣涵,刘怡文. 基于信道冲激响应不敏感特征的分子通信非相干信号检测[J]. 通信学报, 2020, 41(9): 49-58. |
[13] | 杨军,党吉圣. 基于上下文注意力CNN的三维点云语义分割[J]. 通信学报, 2020, 41(7): 195-203. |
[14] | 顾纯祥,吴伟森,石雅男,李光松. 基于自编码器的未知协议分类方法[J]. 通信学报, 2020, 41(6): 88-97. |
[15] | 高红民,曹雪莹,杨耀,花再军,李臣明. 基于CNN的双边融合网络在高光谱图像分类中的应用[J]. 通信学报, 2020, 41(11): 132-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|