[1] |
KRIZHEVSKY A , SUTSKEVER I , HINTON G . ImageNet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems. Piscataway:IEEE Press, 2012: 1097-1105.
|
[2] |
YI L , SU H , GUO X ,et al. SyncSpecCNN:synchronized spectral CNN for 3D shape segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 2282-2290.
|
[3] |
ZHANG J , ZHENG J , WU C ,et al. Variational mesh decomposition[J]. ACM Transactions on Graphics (TOG), 2012,31(21): 1-14.
|
[4] |
XIAO D , LIN H , XIAN C ,et al. CAD mesh model segmentation by clustering[J]. Computers & Graphics, 2011,35(3): 685-691.
|
[5] |
KU J , MOZIFIAN M , LEE J ,et al. Joint 3D proposal generation and object detection from view aggregation[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2018: 1-8.
|
[6] |
YANG B , LUO W , URTASUN R . PIXOR:real-time 3D object detection from point clouds[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 7652-7660.
|
[7] |
KALOGERAKIS E , AVERKIOU M , MAJI S ,et al. 3D shape segmentation with projective convolutional networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 3779-3788.
|
[8] |
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. arXiv Preprint,arXiv:1409.1556, 2014
|
[9] |
HUANG H , KALOGERAKIS E , CHAUDHURI S ,et al. Learning local shape descriptors from part correspondences with multi view convolutional networks[J]. ACM Transactions on Graphics (TOG), 2018,37(1): 1-14.
|
[10] |
CHEN X , MA H , WAN J ,et al. Multi-view 3D object detection network for autonomous driving[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 1907-1915.
|
[11] |
QI C , LIU W , WU C ,et al. Frustum PointNets for 3D object detection from RGB-D data[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 918-927.
|
[12] |
WU Z , SONG S , KHOSLA A ,et al. 3D ShapeNets:a deep representation for volumetric shapes[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015: 1912-1920.
|
[13] |
KLOKOV R , LEMPITSKY V . Escape from cells:deep Kd-networks for the recognition of 3D point cloud models[C]// IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 863-872.
|
[14] |
TATARCHENKO M , DOSOVITSKIY A , BROX T . Octree generating networks:efficient convolutional architectures for high-resolution 3D outputs[C]// IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 2088-2096.
|
[15] |
QI C , SU H , MO K ,et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 652-660.
|
[16] |
QI C , YI L , SU H ,et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]// Advances in Neural Information Processing Systems. Piscataway:IEEE Press, 2017: 5099-5108.
|
[17] |
WANG Y , SUN Y , LIU Z ,et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019,38(5): 146-160.
|
[18] |
CHEN C , FRAGONARA L , TSOURDOS A . GAPNet:graph attention based point neural network for exploiting local feature of point cloud[J]. arXiv Preprint,arXiv:1905.08705, 2019
|
[19] |
LIU X , HAN Z , LIU Y ,et al. Point2sequence:learning the shape representation of 3D point clouds with an attention-based sequence to sequence network[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2019,33: 8778-8785.
|
[20] |
WANG W , YU R , HUANG Q ,et al. SGPN:similarity group proposal network for 3D point cloud instance segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 2569-2578.
|
[21] |
JIANG M , WU Y , ZHAO T ,et al. PointSIFT:a SIFT-like network module for 3D point cloud semantic segmentation[J]. arXiv Preprint,arXiv:1807.00652, 2018
|
[22] |
YE X , LI J , HUANGU H ,et al. 3D recurrent neural networks with context fusion for point cloud semantic segmentation[C]// Proceedings of the European Conference on Computer Vision (ECCV). Piscataway:IEEE Press, 2018: 403-417.
|
[23] |
LANDRIEU L , SIMONOVSKY M . Large-scale point cloud semantic segmentation with superpoint graphs[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 4558-4567.
|
[24] |
LIN M , CHEN Q , YAN S . Network in network[J]. arXiv Preprint,arXiv:1312.4400, 2013
|
[25] |
YI L , GUIBAS L , KIM V ,et al. A scalable active framework for region annotation in 3D shape collections[J]. ACM Transactions on Graphics, 2016,35(6): 1-12.
|
[26] |
ARMENI I , SENER O , ZAMIR A ,et al. 3D semantic parsing of large-scale indoor spaces[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 1534-1543.
|
[27] |
GAIDON A , WANG Q , CABON Y ,et al. Virtual worlds as proxy for multi-object tracking analysis[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 4340-4349.
|
[28] |
ENGELMANN F , KONTOGIANNI T , HERMANS A ,et al. Exploring spatial context for 3D semantic segmentation of point clouds[C]// IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 716-724.
|