[1] |
LIN G J , WEN S , HAN Q L ,et al. Software vulnerability detection using deep neural networks:a survey[J]. Proceedings of the IEEE, 2020,108(10): 1825-1848.
|
[2] |
MIAO Y T , CHEN C , PAN L ,et al. Machine learning-based cyber attacks targeting on controlled information[J]. ACM Computing Surveys, 2022,54(7): 1-36.
|
[3] |
LI Z , ZOU D Q , XU S H ,et al. SySeVR:a framework for using deep learning to detect software vulnerabilities[J]. IEEE Transactions on Dependable and Secure Computing, 2022,19(4): 2244-2258.
|
[4] |
ZHANG J , PAN L , HAN Q L ,et al. Deep learning based attack detection for cyber-physical system cybersecurity:a survey[J]. IEEE/CAA Journal of Automatica Sinica, 2022,9(3): 377-391.
|
[5] |
QIU J Y , ZHANG J , LUO W ,et al. A survey of android malware detection with deep neural models[J]. ACM Computing Surveys, 2021,53(6): 1-36.
|
[6] |
WANG H T , YE G X , TANG Z Y ,et al. Combining graph-based learning with automated data collection for code vulnerability detection[J]. IEEE Transactions on Information Forensics and Security, 2021,16: 1943-1958.
|
[7] |
CHAKRABORTY S , KRISHNA R , DING Y ,et al. Deep learning based vulnerability detection:are we there yet?[J]. IEEE Transactions on Software Engineering, 2022,48(9): 3280-3296.
|
[8] |
YAMAGUCHI F , GOLDE N , ARP D ,et al. Modeling and discovering vulnerabilities with code property graphs[C]// Proceedings of 2014 IEEE Symposium on Security and Privacy. Piscataway:IEEE Press, 2014: 590-604.
|
[9] |
RUSSELL R , KIM L , HAMILTON L ,et al. Automated vulnerability detection in source code using deep representation learning[C]// Proceedings of 2018 17th IEEE International Conference on Machine Learning and Applications. Piscataway:IEEE Press, 2018: 757-762.
|
[10] |
LI Z , ZOU D Q , XU S H ,et al. VulDeePecker:a deep learning-based system for vulnerability detection[J]. arXiv Preprint,arXiv:1801.01681, 2018.
|
[11] |
ZOU D Q , WANG S J , XU S H ,et al. μVulDeePecker:a deep learning-based system for multiclass vulnerability detection[J]. IEEE Transactions on Dependable and Secure Computing, 2021,18(5): 2224-2236.
|
[12] |
LI Z , ZOU D Q , XU S H ,et al. VulDeeLocator:a deep learning-based fine-grained vulnerability detector[J]. IEEE Transactions on Dependable and Secure Computing, 2022,19(4): 2821-2837.
|
[13] |
ZHOU Y , LIU S , SIOW J ,et al. Devign:effective vulnerability identification by learning comprehensive program semantics via graph neural networks[J]. Advances in neural information processing systems, 2019,32(1): 10197-10207.
|
[14] |
LI Y J , TARLOW D , BROCKSCHMIDT M ,et al. Gated graph sequence neural networks[J]. arXiv Preprint,arXiv:1511.05493, 2015.
|
[15] |
ALLAMANIS M , BROCKSCHMIDT M , KHADEMI M . Learning to represent programs with graphs[J]. arXiv Preprint,arXiv:1711.00740, 2017.
|
[16] |
WU Z H , PAN S R , CHEN F W ,et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,32(1): 4-24.
|
[17] |
HERREMANS D , CHUAN C H . Modeling musical context with Word2Vec[J]. arXiv Preprint,arXiv:1706.09088, 2017.
|
[18] |
HU Z N , DONG Y X , WANG K S ,et al. Heterogeneous graph transformer[C]// Proceedings of The Web Conference 2020. New York:ACM Press, 2020: 2704-2710.
|