[1] |
US Department of Transportation. Unmanned Aircraft System (UAS) service demand 2015-2035:literature review & projections of future usage[S]. 2013.
|
[2] |
PwC. Global market for commercial applications of drone technology valued at over 127bn[R]. Pricewaterhouse Coopers, 2018.
|
[3] |
FILIPPONE A . Flight performance of fixed and rotary wing aircraft[M]. Amsterdam: Elsevier, 2009.
|
[4] |
ZENG Y , ZHANG R , LIM T J . Wireless communications with unmanned aerial vehicles:opportunities and challenges[J]. IEEE Communications Magazine, 2016,54(5): 36-42.
|
[5] |
HAYAT S , YANMAZ E , MUZAFFAR R . Survey on unmanned aerial vehicle networks for civil applications:a communications viewpoint[J]. IEEE Communications Surveys & Tutorials, 2016,18(4): 2624-2661.
|
[6] |
LIN X , YAJNANARAYANA V , MURUGANATHAN S D ,et al. The sky is not the limit:LTE for unmanned aerial vehicles[J]. IEEE Communications Magazine, 2018,56(4): 204-210.
|
[7] |
JAWHAR I , MOHAMED N,AL-JAROODI J ,et al. Communication and networking of UAV-based systems:classification and associated architectures[J]. Journal of Network and Computer Applications, 2017(84): 93-108.
|
[8] |
YALINIZ R I B , EL-KEYI A , YANIKOMEROGLU H ,et al. Efficient 3D placement of an aerial base station in next generation cellular networks[C]// 2016 IEEE International Conference on Communications (ICC). IEEE, 2016: 1-5.
|
[9] |
MOZAFFARI M , SAAD W , BENNIS M ,et al. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage[J]. IEEE Communications Letters, 2016,20(8): 1647-1650.
|
[10] |
ALZENAD M , EL-KEYI A , LAGUM F ,et al. 3D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage[J]. IEEE Wireless Communications Letters, 2017,6(4): 434-437.
|
[11] |
AL-HOURANI A , KANDEEPAN S , LARDNER S . Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communications Letters, 2014,3(6): 569-572.
|
[12] |
YANMAZ E , KUSCHNIG R , BETTSTETTER C . Channel measurements over IEEE 802.11a-based UAV-to-ground links[C]// IEEE Global Communications Conference (GLOBECOM’11). IEEE, 2011: 1280-1284.
|
[13] |
ZENG Y , XU X , ZHANG R . Trajectory design for completion time minimization in UAV-enabled multicasting[J]. IEEE Transactions on Wireless Communications, 2018,17(4): 2233-2246.
|
[14] |
HE H , ZHANG S , ZENG Y ,et al. Joint altitude and beamwidth optimization for UAV-enabled multiuser communications[J]. IEEE Communications Letters, 2018,22(2): 344-347.
|
[15] |
ZENG Y , ZHANG R . Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions Wireless Communications, 2017,16(6): 3747-3760.
|
[16] |
SIMUNEK M , PECHAC P , FONTAN F P . Excess loss model for low elevation links in urban areas for UAVs[J]. Radio Engineering, 2011,20(3): 561-568.
|
[17] |
CAI X S , GONZALEZ-PLAZA A , ALONSO D ,et al. Low altitude UAV propagation channel modelling[C]// 2017 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017: 1443-1447.
|
[18] |
GODDEMEIER N , DANIEL K , WIETFELD C . Coverage evaluation of wireless networks for unmanned aerial systems[C]// IEEE Global Communications Conference (GLOBECOM’10). IEEE, 2010: 1760-1765.
|
[19] |
TAVARES T , SEBASTIAO P , SOUTO N ,et al. Generalized LUI propagation model for UAVs communications using terrestrial cellular networks[C]// IEEE Vehicular Technology Conference (VTC–Fall’15). IEEE, 2015: 1-6.
|
[20] |
AL-HOURANI A , GOMEZ K . Modeling cellular-to-UAV path-loss for suburban environments[J]. IEEE Wireless Communications Letters, 2017(99): 1.
|
[21] |
AL-HOURANI A , KANDEEPAN S , JAMALIPOUR A . Modeling air-to-ground path loss for low altitude platforms in urban environments[C]// Global Communications Conference. IEEE, 2014: 2898-2904.
|
[22] |
GODDEMEIER N , WIETFELD C . Investigation of air-to-air channel characteristics and a UAV specific extension to the rice model[C]// IEEE Global Communications (GLOBECOM’15). IEEE, 2015: 1-5.
|
[23] |
ONO F , OCHIAI H , MIURA R . A wireless relay network based on unmanned aircraft system with rate optimization[J]. IEEE Transactions on Wireless Communications, 2016,15(11): 7699-7708.
|
[24] |
AZARI M M , ROSAS F , CHEN K C ,et al. Joint sum-rate and power gain analysis of an aerial base station[C]// 2016 IEEE Globecom Workshops (GC Wkshps). IEEE, 2016: 1-6.
|
[25] |
AZARI M M , ROSAS F , CHEN K C ,et al. Ultra reliable UAV communication using altitude and cooperation diversity[J]. IEEE Transactions on Communications, 2018,66(1): 330-344.
|
[26] |
ZENG Y , XU J , ZHANG R ,et al. Energy minimization for wireless communication with rotary-wing UAV[J]. Computer Science, 2018: 1-31.
|
[27] |
ZHAN P , YU K , SWINDLEHURST A L . Wireless relay communications with unmanned aerial vehicles:performance and optimization[J]. IEEE Transactions on Aerospace & Electronic Systems, 2011,47(3): 2068-2085.
|
[28] |
CHEN Y , FENG W , ZHENG G . Optimum placement of UAV as relays[J]. IEEE Communications Letters, 2018,22(2): 248-251.
|
[29] |
ZENG Y , ZHANG R , LIM T J . Throughput maximization for UAV-enabled mobile relaying systems[J]. IEEE Transactions on Communications, 2016,64(12): 4983-4996.
|
[30] |
ZHANG S H , ZHANG H L , DI B Y ,et al. Joint trajectory and power optimization for UAV relay networks[J]. IEEE Communications Letters, 2018,22(1): 161-164.
|
[31] |
ZHANG J W , ZENG Y , ZHANG R . Spectrum and energy efficiency maximization in UAV-enabled mobile relaying[C]// 2017 IEEE International Conference on Communications (ICC). IEEE, 2017: 1-6.
|
[32] |
SONG Q H , ZHENG F C . Energy efficient multi-antenna UAV-enabled mobile relay[J]. China Communications, 2018,15(8): 41-50.
|
[33] |
SONG Q H , JIN S , ZHENG F C . Joint power allocation and beamforming for UAV-enabled relaying systems with channel estimation errors[C]// 2018 IEEE 87th Vehicular Technology Conference (VTC Spring). IEEE, 2018: 1-5.
|
[34] |
ASADI A , WANG Q , MANCUSO V . A survey on device-to-device communication in cellular networks[J]. IEEE Communications Surveys & Tutorials, 2014,16(4): 1801-1819.
|
[35] |
MOTLAGH N H , BAGAA M , TALEB T . UAV-based IoT platform:a crowd surveillance use case[J]. IEEE Communications Magazine, 2017,55(2): 128-134.
|
[36] |
MOZAFFARI M , SAAD W , BENNIS M ,et al. Mobile Internet of things:can UAVs provide an energy-efficient mobile architecture[C]// 2016 IEEE Global Communications Conference (GLOBECOM). IEEE, 2016: 1-6.
|
[37] |
MOZAFFARI M , SAAD W , BENNIS M ,et al. Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of things communications[J]. IEEE Transactions on Wireless Communications, 2017,16(11): 7574-7589.
|
[38] |
ALEJO D , COBANO J A , HEREDIA G ,et al. Efficient trajectory planning for WSN data collection with multiple UAVs[M]. Berlin: Springer, 2015.
|
[39] |
WANG C , MA F , YAN J ,et al. Efficient aerial data collection with UAV in large-scale wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2015,11(11): 1-19.
|
[40] |
ZHAN C , ZENG Y , ZHANG R . Energy-efficient data collection in UAV enabled wireless sensor network[J]. IEEE Wireless Communications Letters, 2017(99): 1.
|
[41] |
GONG J , CHANG T H , SHEN C ,et al. Aviation time minimization of UAV for data collection over wireless sensor networks[J]. Computer Science, 2018.
|
[42] |
ZENG Y , XU X , ZHANG R . Trajectory design for completion time minimization in UAV-enabled multicasting[J]. IEEE Transactions Wireless Communications, 2018,17(4): 2233-2246.
|
[43] |
HE H , ZHANG S , ZENG Y ,et al. Joint altitude and beamwidth optimization for UAV-enabled multiuser communications[J]. IEEE Communications Letters, 2018,22(2): 344-347.
|
[44] |
SONG Q H , JIN S , ZHENG F C ,et al. Completion time and energy consumption minimization for UAV-enabled multicasting[J]. IEEE Wireless Communications Letter, 2019: 1.
|