[1] |
CHIANG M , ZHANG T . Fog and IoT:an overview of research opportunities[J]. IEEE Internet of Things Journal, 2016,3(6): 854-864.
|
[2] |
LOKE S W . The Internet of flying-things:opportunities and challenges with airborne fog computing and mobile cloud in the clouds[J]. arXiv preprint arXiv:1507.04492, 2015.
|
[3] |
ZENG Y , ZHANG R , LIM T J . Wireless communications with unmanned aerial vehicles:opportunities and challenges[J]. IEEE Communications Magazine, 2016,54(5): 36-42.
|
[4] |
WU Q Q , LIU L , ZHANG R . Fundamental trade-offs in communication and trajectory design for UAV-enabled wireless network[J]. IEEE Wireless Communications, 2019,26(1): 36-44.
|
[5] |
KU Y J , LIN D Y , LEE C F ,et al. 5G radio access network design with the fog paradigm:confluence of communications and computing[J]. IEEE Communications Magazine, 2017,55(4): 46-52.
|
[6] |
ZENG Y , XU J , ZHANG R . Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019,18(4): 2329-2345.
|
[7] |
ZENG Y , ZHANG R . Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2017,16(6): 3747-3760.
|
[8] |
MEI H B , WANG K Z , ZHOU D D ,et al. Joint trajectory-task-cache optimization in UAV-enabled mobile edge networks for cyber-physical system[J]. IEEE Access, 2019(7): 156476-156488.
|
[9] |
MNIH V , KAVUKCUOGLU K , SILVER D ,et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518(7540): 529-533.
|
[10] |
LI R P , ZHAO Z F , ZHOU X ,et al. Intelligent 5G:when cellular networks meet artificial intelligence[J]. IEEE Wireless Communications, 2017,24(5): 175-183.
|
[11] |
CHEN M Z , MOZAFFARI M , SAAD W ,et al. Caching in the sky:proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience[J]. IEEE Journal on Selected Areas in Communications, 2017,35(5): 1046-1061.
|
[12] |
CHEN M Z , SAAD W , YIN C C . Liquid state machine learning for resource and cache management in LTE-U unmanned aerial vehicle (UAV) networks[J]. IEEE Transactions on Wireless Communications, 2019,18(3): 1504-1517.
|
[13] |
BOYD S , VANDENBERGHE L . Convex optimization[M]. Cambridge: Cambridge University Press, 2004.
|
[14] |
MEI H B , YANG K , LIU Q ,et al. Joint trajectory-resource optimization in UAV-enabled edge-cloud system with virtualized mobile clone[J]. IEEE Internet of Things Journal, 2020,7(7): 5906-5921.
|
[15] |
HE Y , YU F R , ZHAO N ,et al. Software-defined networks with mobile edge computing and caching for smart cities:a big data deep reinforcement learning approach[J]. IEEE Communications Magazine, 2017,55(12): 31-37.
|
[16] |
CHALLITA U , SAAD W , BETTSTETTER C . Deep reinforcement learning for interference-aware path planning of cellular-connected UAVs[C]// 2018 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2018: 1-7.
|
[17] |
LIU C H , CHEN Z Y , TANG J ,et al. Energy-efficient UAV control for effective and fair communication coverage:a deep reinforcement learning approach[J]. IEEE Journal on Selected Areas in Communications, 2018,36(9): 2059-2070.
|
[18] |
MEI H B , YANG K , SHEN J ,et al. Joint trajectory-task-cache optimization with phase-shift design of RIS-assisted UAV for MEC[EB]. IEEE Wireless Communications Letters, 2021.
|
[19] |
PENG H X , SHEN X S . DDPG-based resource management for MEC/UAV-assisted vehicular networks[C]// 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Piscataway:IEEE Press, 2020: 1-6.
|