Chinese Journal on Internet of Things ›› 2021, Vol. 5 ›› Issue (2): 87-96.doi: 10.11959/j.issn.2096-3750.2021.00229
• Topic: Edge Intelligence and Fog Computing in IoT • Previous Articles Next Articles
Chunmin LIN, Liekang ZENG, Xu CHEN
Revised:
2021-03-20
Online:
2021-06-30
Published:
2021-06-01
Supported by:
CLC Number:
Chunmin LIN, Liekang ZENG, Xu CHEN. Research on power efficient autonomous UAV navigation algorithm: an edge intelligence driven approach[J]. Chinese Journal on Internet of Things, 2021, 5(2): 87-96.
[1] | FAESSLER M , FONTANA F , FORSTER C ,et al. Autonomous,vision-based flight and live dense 3D mapping with a quadrotor micro aerial vehicle[J]. Journal of Field Robotics, 2016,33(4): 431-450. |
[2] | SCHERER S , REHDER J , ACHAR S ,et al. River mapping from a flying robot:state estimation,river detection,and obstacle mapping[J]. Autonomous Robots, 2012,33(1/2): 189-214. |
[3] | PALOSSI D , GOMEZ A , DRASKOVIC S ,et al. Extending the lifetime of nano-blimps via dynamic motor control[J]. Journal of Signal Processing Systems, 2019,91(3/4): 339-361. |
[4] | ZHOU Z , CHEN X , LI E ,et al. Edge intelligence:paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019,107(8): 1738-1762. |
[5] | SHEN S J , MULGAONKAR Y , MICHAEL N ,et al. Multi-sensor fusion for robust autonomous flight in indoor and outdoor environments with a rotorcraft MAV[C]// 2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2014: 4974-4981. |
[6] | WEISS S , SCARAMUZZA D , SIEGWART R . Monocular-SLAMbased navigation for autonomous micro helicopters in GPS-denied environments[J]. Journal of Field Robotics, 2011,28(6): 854-874. |
[7] | ROSS S , MELIK-BARKHUDAROV N , SHANKAR K S ,et al. Learning monocular reactive UAV control in cluttered natural environments[C]// 2013 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2013: 1765-1772. |
[8] | GIUSTI A , GUZZI J , CIRE?AN D C ,et al. A machine learning approach to visual perception of forest trails for mobile robots[J]. IEEE Robotics and Automation Letters, 2016,1(2): 661-667. |
[9] | SMOLYANSKIY N , KAMENEV A , SMITH J ,et al. Toward low-flying autonomous MAV trail navigation using deep neural networks for environmental awareness[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2017: 4241-4247. |
[10] | MEHROOZ G , EBEID E , SCHNEIDER-KAMP P . System design of an open-source cloud-based framework for Internet of drones application[C]// 2019 22nd Euromicro Conference on Digital System Design (DSD). Piscataway:IEEE Press, 2019: 572-579. |
[11] | PALOSSI D , LOQUERCIO A , CONTI F ,et al. A 64-mW DNN-based visual navigation engine for autonomous nano-drones[J]. IEEE Internet of Things Journal, 2019,6(5): 8357-8371. |
[12] | 李肯立, 刘楚波 . 边缘智能:现状和展望[J]. 大数据, 2019,5(3): 69-75. |
LI K L , LIU C B . Edge intelligence:state-of-the-art and expectations[J]. Big Data Research, 2019,5(3): 69-75. | |
[13] | 莫梓嘉, 高志鹏, 苗东 . 边缘智能:人工智能向边缘分布式拓展的新触角[J]. 数据与计算发展前沿, 2020,2(4): 16-27. |
MO Z J , GAO Z P , MIAO D . Edge intelligence:a new exploration for artificial intelligence expanding to edge[J]. Frontiers of Data & Computing, 2020,2(4): 16-27. | |
[14] | ZHANG X Z , WANG Y F , LU S D ,et al. OpenEI:an open framework for edge intelligence[C]// 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). Piscataway:IEEE Press, 2019: 1840-1851. |
[15] | FRAGKOS G , KEMP N , TSIROPOULOU E E ,et al. Artificial intelligence empowered UAVs data offloading in mobile edge computing[C]// ICC 2020-2020 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2020: 1-7. |
[16] | 张星洲, 鲁思迪, 施巍松 . 边缘智能中的协同计算技术研究[J]. 人工智能, 2019,6(5): 55-67. |
ZHANG X Z , LU S D , SHI W S . Research on collaborative computing technology in edge intelligence[J]. Artificial Intelligence, 2019,6(5): 55-67. | |
[17] | 刘通, 方璐, 高洪皓 . 边缘计算中任务卸载研究综述[J]. 计算机科学, 2021,48(1): 11-15. |
LIU T , FANG L , GAO H H . Survey of task offloading in edge computing[J]. Computer Science, 2021,48(1): 11-15. | |
[18] | MCMAHAN B , RAMAGE D . Federated learning:collaborative machine learning without centralized training data[J]. Google Research Blog, 2017:3. |
[19] | FANG B Y , ZENG X , ZHANG M . NestDNN:resource-aware multi-tenant on-device deep learning for continuous mobile vision[C]// MobiCom’18:Proceedings of the 24th Annual International Conference on Mobile Computing and Networking.[S.l.:s.n.], 2018: 115-127. |
[20] | 董超, 沈赟, 屈毓锛 . 基于无人机的边缘智能计算研究综述[J]. 智能科学与技术学报, 2020,2(3): 227-239. |
DONG C , SHEN Y , QU Y B . A survey of UAV-based edge intelligent computing[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(3): 227-239. | |
[21] | ZISSERMAN A , SIMONYAN , KAREN ,et al. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014. |
[22] | SZEGEDY C , LIU W , JIA Y Q ,et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2015: 1-9. |
[23] | HE K M , ZHANG X Y , REN S Q ,et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016: 770-778. |
[24] | HE K M , ZHANG X Y , REN S Q ,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9): 1904-1916. |
[25] | SHAN S , DEY D , LOVETT C ,et al. Airsim:high-fidelity visual and physical simulation for autonomousvehicles[J]. Field and Service Robotics, 2018: 621-635. |
[26] | YU H H , WINKLER S . Image complexity and spatial information[C]// 2013 5th International Workshop on Quality of Multimedia Experience (QoMEX). Piscataway:IEEE Press, 2013: 12-17. |
[27] | PERLIO J , HYVARINEN A . Modelling image complexity by independent component analysis,with application to content-based image retrieval[J]. International Conferenceon Artificial Neural Networks, 2009: 704-714. |
[28] | ROMERO J , MACHADO P , CARBALLAL A ,et al. Using complexity estimates in aesthetic image classification[J]. Journal of Mathematics and the Arts, 2012,6(2/3): 125-136. |
[29] | KAZAKOVA N , MARGALA M , DURDLE N G . Sobel edge detection processor for a real-time volume rendering system[C]// 2004 IEEE International Symposium on Circuits and Systems. Piscataway:IEEE Press, 2004. |
[30] | AWATE Y P , . Policy-gradient based actor-critic algorithms[C]// 2009 WRI Global Congress on Intelligent Systems. Piscataway:IEEE Press, 2009: 505-509. |
[31] | PALACIN J , PALLEJA T , VALGANON I ,et al. Measuring coverage performances of a floor cleaning mobile robot using a vision system[C]// Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2005: 4236-4241. |
[1] | Zhihong WANG, Supeng LENG, Kai XIONG. Multi-agent resource allocation strategy for UAV swarm-based cooperative sensing [J]. Chinese Journal on Internet of Things, 2023, 7(1): 18-26. |
[2] | Kai JIANG, Yue CAO, Huan ZHOU, Xuefeng REN, Yongdong ZHU, Hai LIN. Edge intelligence empowered internet of vehicles: concept, framework, issues, implementation, and prospect [J]. Chinese Journal on Internet of Things, 2023, 7(1): 37-48. |
[3] | Zhifei ZHANG, Feng LIU, Yiyang GE, Shuo LI, Yu ZHANG, Ke XIONG. An intrusion detection method based on depthwise separable convolution and attention mechanism [J]. Chinese Journal on Internet of Things, 2023, 7(1): 49-59. |
[4] | Cenhuishan LIAO, Junyan CHEN, Guanping LIANG, Xiaolan XIE, Xiaoye LU. Quality of service optimization algorithm based on deep reinforcement learning in software defined network [J]. Chinese Journal on Internet of Things, 2023, 7(1): 73-82. |
[5] | Rui JIANG, Liuting SUN, Xiaoming WANG, Dapeng LI, Youyun XU. Research on EEG signal classification of motor imagery based on AE and Transformer [J]. Chinese Journal on Internet of Things, 2023, 7(1): 118-128. |
[6] | Biao ZHANG, Ximing WANG, Yifan XU, Wen LI, Hao HAN, Songyi LIU, Xueqiang CHEN. Multi-domain collaborative anti-jamming based on multi-agent deep reinforcement learning [J]. Chinese Journal on Internet of Things, 2022, 6(4): 104-116. |
[7] | Huanhuan ZHANG, Anfu ZHOU, Huadong MA. Reinforcement learning-based real-time video streaming control and on-device training research [J]. Chinese Journal on Internet of Things, 2022, 6(4): 1-13. |
[8] | Xian LI, Suzhi BI, Hongru ZENG, Bin LIN, Xiaohui LIN. Collaborative task offloading and resource allocation optimization for intelligent edge devices [J]. Chinese Journal on Internet of Things, 2022, 6(4): 41-52. |
[9] | Jialin ZHI, Yinglei TENG, Xinyang ZHANG, Tao NIU, Mei SONG. Cooperative inference analysis based on DNN convolutional kernel partitioning [J]. Chinese Journal on Internet of Things, 2022, 6(4): 72-81. |
[10] | Jiujiu CHEN, Caili GUO, Chunyan FENG, Chuanhong LIU. Resource allocation for the semantic communication in the intelligent networked environment [J]. Chinese Journal on Internet of Things, 2022, 6(3): 47-57. |
[11] | Hanqing YU, Yan LIN, Linqiong JIA, Qiang LI, Yijin Zhang. A distributed strategy for the multi-target rescue using a UAV swarm under communication constraints [J]. Chinese Journal on Internet of Things, 2022, 6(3): 103-112. |
[12] | Dan LUO, Ruzhi XU, Zhitao GUAN. Differential privacy budget optimization based on deep learning in IoT [J]. Chinese Journal on Internet of Things, 2022, 6(2): 65-76. |
[13] | Xuanzhe XU, Ke NING, Xuemin ZHENG, Mingxin ZHAO, Mengmeng XU, Nanjian WU, Liyuan LIU. Verification of an artificial intelligence vision chip design for edge computing based on hardware simulation system [J]. Chinese Journal on Internet of Things, 2022, 6(1): 20-28. |
[14] | Zihui LUO, Chengling JIANG, Liang LIU, Xiaolong ZHENG, Huadong MA. Research on deep reinforcement learning based intelligent shop scheduling method [J]. Chinese Journal on Internet of Things, 2022, 6(1): 53-64. |
[15] | Guoquan LI, Yonghai XU, Jinzhao LIN, Zhengwen HUANG. Res-DNN based signal detection algorithm for end-to-end MIMO systems [J]. Chinese Journal on Internet of Things, 2022, 6(1): 65-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|