智能科学与技术学报 ›› 2019, Vol. 1 ›› Issue (1): 21-33.doi: 10.11959/j.issn.2096-6652.201908
吕宜生1,2,陈圆圆1,2,金峻臣1,3,李镇江1,2,叶佩军1,2,朱凤华1,2()
修回日期:
2019-02-20
出版日期:
2019-03-20
发布日期:
2019-05-28
作者简介:
吕宜生(1983- ),男,山东蒙阴人,博士,中国科学院自动化研究所复杂系统管理与控制国家重点实验室副研究员,主要研究方向为智能交通、人工智能、平行交通管理与控制系统。|陈圆圆(1989- ),男,河北沧州人,博士,中国科学院自动化研究所复杂系统管理与控制国家重点实验室助理研究员,主要研究方向为交通数据分析、社会交通、平行交通管理与控制系统。|金峻臣(1991- ),男,浙江宁波人,博士,银江股份智慧交通研究院副院长,中国科学院自动化研究所复杂系统管理与控制国家重点实验室博士后,主要研究方向为人工智能、深度学习、平行交通管理与控制系统。|李镇江(1980- ),男,湖北五峰人,博士,中国科学院自动化研究所复杂系统管理与控制国家重点实验室高级工程师,主要研究方向为分布式人工智能与多Agent系统、平行交通管理与控制系统。|叶佩军(1985- ),男,四川绵阳人,博士,中国科学院自动化研究所复杂系统管理与控制国家重点实验室助理研究员,青岛市智能产业技术研究院专业技术工程师,主要研究方向为多Agent系统建模、交通行为分析与交通流优化、人工智能、分布式计算。|朱凤华(1976- ),男,山东聊城人,博士,中国科学院自动化研究所复杂系统管理与控制国家重点实验室副研究员,主要研究方向为人工交通系统、平行交通管理系统。
基金资助:
Yisheng LV1,2,Yuanyuan CHEN1,2,Junchen JIN1,3,Zhenjiang LI1,2,Peijun YE1,2,Fenghua ZHU1,2()
Revised:
2019-02-20
Online:
2019-03-20
Published:
2019-05-28
Supported by:
摘要:
概述了平行交通系统的概念、框架、方法与应用。平行交通系统能够针对具体任务和特定场景构建对应的软件定义的人工交通系统,在此基础上,利用计算实验方法进行实验、分析、评估、预测、学习与优化,并借助平行执行实现对实际交通系统的管理与控制,实现虚实互动的平行智能。平行交通管理与控制是ACP理论的拓展应用,主要强调虚实互动的平行智能产生方式在城市交通管理与控制中的应用,以提高城市交通管理与控制的智能化水平。
中图分类号:
吕宜生, 陈圆圆, 金峻臣, 等. 平行交通:虚实互动的智能交通管理与控制[J]. 智能科学与技术学报, 2019, 1(1): 21-33.
Yisheng LV, Yuanyuan CHEN, Junchen JIN, et al. Parallel transportation:virtual-real interaction for intelligent traffic management and control[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(1): 21-33.
[1] | WANG F Y , WANG X , LI L ,et al. Steps toward parallel intelligence[J]. IEEE/CAA Journal of Automatica Sinica, 2016,3(4): 345-348. |
[2] | 王飞跃 . 人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论[J]. 复杂系统与复杂性科学, 2004,1(4): 25-35. |
WANG F Y . Artificial societies,computational experiments,and parallel systems:a discussion on computational theory of complex social-economic systems[J]. Complex Systems and Complexity Science, 2004,1(4): 25-35. | |
[3] | 王飞跃 . 计算实验方法与复杂系统行为分析和决策评估[J]. 系统仿真学报, 2004,16(5): 893-897. |
WANG F Y . Computational experiments for behavior analysis and decision evaluation of complex systems[J]. Journal of System Simulation, 2004,16(5): 893-897. | |
[4] | 王飞跃 . 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004,19(5): 485-489,514. |
WANG F Y . Parallel system methods for management and control of complex systems[J]. Control and Decision, 2004,19(5): 485-489,514. | |
[5] | 王飞跃 . 关于复杂系统研究的计算理论与方法[J]. 中国基础科学, 2004,5: 5-12. |
WANG F Y . Computational theory and method for complex system research[J]. China Basic Science, 2004,5: 5-12. | |
[6] | WANG F Y . Agent-based control for networked traffic management systems[J]. IEEE Intelligent Systems, 2005,20(5): 92-96. |
[7] | WANG F Y . Toward a revolution in transportation operations:AI for complex systms[J]. IEEE Intelligent Systems, 2008,23(6): 8-13. |
[8] | ZHAO Y , GAO H , WANG S ,et al. A novel approach for traffic signal control:a recommendation perspective[J]. IEEE Intelligent Transportation Systems Magazine, 2017,9(3): 127-135. |
[9] | WANG F Y . Parallel control and management for intelligent transportation systems:concepts,architectures,and applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2010,11(3): 630-638. |
[10] | XIONG G , DONG X , FAN D ,et al. Parallel traffic management system and its application to the 2010 Asian games[J]. IEEE Transactions on Intelligent Transportation Systems, 2013,14(1): 225-235. |
[11] | LV Y , DUAN Y , KANG W ,et al. Traffic flow prediction with big data:a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(2): 865-873. |
[12] | LV Y , ZHANG X , KANG W,etal . Managing emergency traffic evacuation with a partially random destination allocation strategy:a computational-experiment-based optimization approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(4): 2182-2191. |
[13] | DUAN Y , LV Y , LIU ? L ,et al. An efficient realization of deep learning for traffic data imputation[J]. Transportation Research Part C:Emerging Technologies, 2016,72: 168-181. |
[14] | HUANG W , WANG K , LV Y ,et al. Autonomous vehicles testing methods review[C]// in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016: 163-168. |
[15] | DUAN Y , LV Y , WANG F Y . Travel time prediction with LSTM neural network[C]// in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016: 1053-1058. |
[16] | CHEN Y , LV Y , LI Z ,et al. Long short-term memory model for traffic congestion prediction with online open data[C]// in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016: 132-137. |
[17] | YE P , WANG F Y . Hybrid calibration of agent-based travel model using traffic counts and AVI data[C]// IEEE International Conference on Intelligent Transportation Systems (ITSC 2017),2017,Yokohama,Japan, 2017: 16-19. |
[18] | YE P , WEN D . Optimal traffic sensor location for origin-destination estimation using compressed sensing framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2017,18(7): 1857-1866. |
[19] | YE P , WEN D . A study of destination selection model based on link flows[J]. IEEE Transactions on Intelligent Transportation Systems, 2013,14(1): 428-437. |
[20] | 王坤峰, 苟超, 王飞跃 . 平行视觉:基于ACP的智能视觉计算方法[J]. 自动化学报, 2016,42(10): 1490-1500. |
WANG K F , GOU C , WANG F Y . Parallel vision:an ACP-based approach to intelligent vision computing[J]. Acta Automatic Sinica, 2016,42(10): 1490-1500. | |
[21] | 王飞跃, 王晓, 袁勇 ,等. 社会计算与计算社会:智慧社会的基础与必然[J]. 科学通报, 2015,60(Z1): 460-469. |
WANG F Y , WANG X , YUAN Y ,et al. Social computing and computing society:the foundation and necessity of a smart society[J]. Chinese Science Bulletin, 2015,60(Z1): 460-469. | |
[22] | WANG X , ZHENG X , ZHANG X ,et al. Analysis of cyber interactive behaviors using artificial community and computational experiments[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2017,47(6): 995-1006. |
[23] | 王飞跃 . 社会信号处理与分析的基本框架:从社会传感网络到计算辩证解析方法[J]. 中国科学:信息科学, 2013,12: 1598-1611. |
WANG F Y . The basic framework of social signal processing and analysis:from social sensor networks to computational dialectical analysis methods[J]. Scientia Sinica (Informationis), 2013,12: 1598-1611. | |
[24] | KANG M , WANG F Y . From parallel plants to smart plants:intelligent control and management for plant growth[J]. IEEE/CAA Journal of Automatica Sinica, 2017,4(2): 161-166. |
[25] | 王飞跃 . 软件定义的系统与知识自动化:从牛顿到默顿的平行升华[J]. 自动化学报, 2015,41(1): 1-8. |
WANG F Y . Software-defined system and knowledge automation:parallel sublimation from Newton to Merton[J]. Acta Automatic Sinica, 2015,41(1): 1-8. | |
[26] | YE P , WANG X , CHEN C ,et al. Hybrid agent modeling in population simulation:current approaches and future directions[J]. Journal of Artificial Societies and Social Simulation, 2016,19(1):12. |
[27] | YE P , HU X , YUAN Y ,et al. Population synthesis based on joint distribution inference without disaggregate samples[J]. Journal of Artificial Societies and Social Simulation, 2017,20(4):16. |
[28] | YE P , WANG S , WANG F Y . A general cognitive architecture for agent-based modeling in artificial societies[J]. IEEE Transactions on Computational Social Systems, 2018,5(1): 176-185. |
[29] | WANG X , JIANG R , LI L ,et al. Capturing car-following behaviors by deep learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2017,99: 1-11. |
[30] | 吕宜生 . 突发公共事件对交通系统的影响分析及对策研究[D]. 北京:中国科学院自动化研究所, 2010. |
LV ? S . Analyzing and managing transportation systems under public emergency[D]. Beijing:Institute of Automation,Chinese Academy of Sciences, 2010. | |
[31] | 崔凯楠, 郑晓龙, 文丁 ,等. 计算实验研究方法及应用[J]. 自动化学报, 2013,39(8): 1157-1169. |
CUI K N , ZHENG X L , WEN D ,et al. Computational experimental research method and application[J]. Acta Automatica Sinica, 2013,39(8): 1157-1169. | |
[32] | WANG F Y , ZHANG H , LIU D R . Adaptive dynamic programming:an introduction[J]. IEEE Computational Intelligence Magazine, 2009,4(2): 39-47. |
[33] | WANG F Y , JIN N , LIU D R ,et al. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound[J]. IEEE Transactions on Neural Networks, 2011,22(1): 24-36. |
[34] | 王飞跃, 刘德荣, 熊刚 ,等. 复杂系统的平行控制理论及应用[J]. 复杂系统与复杂性科学, 2012,3: 1-12. |
WANG F Y , LIU D R , XIONG G ,et al. Parallel control theory and application of complex systems[J]. Complex Systems and Complexity Science, 2012,3: 1-12. | |
[35] | SIMAO H P , DAY J , GEORGE A P ,et al. An approximate dynamic programming algorithm for large-scale fleet management:a case application[J]. Transportation Science, 2009,43(2): 178-197. |
[36] | WANG F Y , ZHANG J , ZHENG X ,et al. Where does AlphaGo go:from church-turing thesis to AlphaGo thesis and beyond[J]. IEEE/CAA Journal of Automatica Sinica, 2016,3(2): 113-120. |
[37] | WANG F Y , ZHANG J , WEI Q ,et al. PDP:parallel dynamic programming[J]. IEEE/CAA Journal of Automatica Sinica, 2017,4(1): 1-5. |
[38] | 李力, 林懿伦, 曹东璞 ,等. 平行学习——机器学习的一个新型理论框架[J]. 自动化学报, 2017,43(1): 1-8. |
LI L , LIN ? L , CAO D P ,et al. Parallel learning—a new framework for machine learning[J]. Acta Automatica Sinica, 2017,43(1): 1-8. | |
[39] | LV Y , CHEN Y , ZHANG X ,et al. Social media based transportation research:the state of the work and the networking[J]. IEEE/CAA Journal of Automatica Sinica, 2017,4(1): 19-26. |
[40] | MIAO Q , ZHU F , LV Y ,et al. A game-engine-based platform for modeling and computing artificial transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2011,12(2): 343-353. |
[41] | WANG F Y , TANG S . A framework for artificial transportation systems:from computer simulations to computational experiments[C]// in Intelligent Transportation Systems,IEEE, 2005: 1130-1134. |
[42] | ZHANG N , WANG F Y , ZHU F ,et al. DynaCAS:computational experiments and decision support for ITS[J]. IEEE Intelligent Systems, 2008,23(6): 19-23. |
[43] | LI L , LV Y , WANG F Y . Traffic signal timing via deep reinforcement learning[J]. IEEE/CAA Journal of Automatica Sinica, 2016,3(3): 247-254. |
[44] | LI Z , CHEN C , WANG K . Cloud computing for agent-based urban transportation systems[J]. Intelligent Systems,IEEE, 2011,26(1): 73-79. |
[45] | ZHU F , CHEN S , MAO Z H ,et al. Parallel public transportation system and its application in evaluating evacuation plans for large-scale activities[J]. IEEE Transactions on Intelligent Transportation Systems, 2014,15(4): 1728-1733. |
[46] | ZHU F , LI Z , CHEN S ,et al. Parallel transportation management and control system and its applications in building smart cities[J]. IEEE Transactions on Intelligent Transportation Systems, 2016,99: 1-10. |
[1] | 缪青海, 吕宜生. 元宇宙下的平行交通系统[J]. 智能科学与技术学报, 2023, 5(1): 32-40. |
[2] | 康孟珍, 孙贺全, 王秀娟, 王飞跃. 系统农业:结合农业社会经济属性的建模和控制[J]. 智能科学与技术学报, 2023, 5(1): 41-50. |
[3] | 王晓, 杨林瑶, 胡斌, 侯家琛. 平行推理:一种基于ACP方法的虚实互动的知识协同框架[J]. 智能科学与技术学报, 2023, 5(1): 69-82. |
[4] | 田永林, 陈苑文, 杨静, 王雨桐, 王晓, 缪青海, 王子然, 王飞跃. 元宇宙与平行系统:发展现状、对比及展望[J]. 智能科学与技术学报, 2023, 5(1): 121-132. |
[5] | 康孟珍, 邱文忠, 陈自富, 王猛, 许沙沙, 王秀娟, 倪爱东, 蒋玉洁, 陈世超, DEREFFYE Philippe, 王飞跃. 平行圆明园:从数字孪生园林到元宇宙智慧遗址公园[J]. 智能科学与技术学报, 2022, 4(3): 301-307. |
[6] | 郭超, 鲁越, 王晓, 易达, 王虓, 王飞跃. 人机物CPSS智能融合的平行创作架构与关键技术研究[J]. 智能科学与技术学报, 2022, 4(3): 344-354. |
[7] | 张向文, 王飞跃. 平行轮胎的基本架构与关键技术[J]. 智能科学与技术学报, 2022, 4(3): 445-457. |
[8] | 陈苑文, 王晓, 李灵犀, 王飞跃. 基于社会媒体数据增强的交通态势感知研究及进展[J]. 智能科学与技术学报, 2022, 4(1): 1-13. |
[9] | 李小双, 王晓, 杨林瑶, 田永林, 王雨桐, 张俊, 王飞跃. 元电网MetaGrid:基于平行电网的新一代智能电网的体系与架构[J]. 智能科学与技术学报, 2021, 3(4): 387-398. |
[10] | 常方乐, 康孟珍, 王秀娟, 雷加强, 王飞跃. 平行智能风沙防护治理决策支持系统——塔克拉玛干沙漠公路及其防沙体系[J]. 智能科学与技术学报, 2021, 3(4): 499-506. |
[11] | 李亚玲, 杨林瑶, 葛俊, 覃缘琪, 王晓. 博弈5.0:基于平行系统和机器博弈的社会认知平行博弈[J]. 智能科学与技术学报, 2021, 3(4): 507-520. |
[12] | 王飞跃, 蒋怀光. 平行电池:智能生态化电池技术与服务体系的框架和流程[J]. 智能科学与技术学报, 2021, 3(4): 521-531. |
[13] | 王飞跃. 平行哲学与智能技术:平行产业与智慧社会的对偶方程与测试基础[J]. 智能科学与技术学报, 2021, 3(3): 245-255. |
[14] | 王春法, 王飞跃, 鲁越, 李华飙, 郭超. 平行博物馆:新时代博物馆运营的智能管理与控制[J]. 智能科学与技术学报, 2021, 3(2): 125-136. |
[15] | 刘文, 胡琨林, 李岩, 刘钊. 移动目标轨迹预测方法研究综述[J]. 智能科学与技术学报, 2021, 3(2): 149-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|