[1] |
ZHU Y F , TANG X M . Overview of swarm intelligence[C]// Proceedings of 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). Piscataway:IEEE Press, 2010.
|
[2] |
REYNOLDS C W , . Flocks,herds and schools:a distributed behavioral model[C]// Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. New York:ACM Press, 1987: 25-34.
|
[3] |
VICSEK T , CZIRóK A , BEN-JACOB E ,et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995,75(6): 1226-1229.
|
[4] |
DEB K , PRATAP A , AGARWAL S ,et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2): 182-197.
|
[5] |
DORIGO M , BLUM C . Ant colony optimization theory:a survey[J]. Theoretical Computer Science, 2005,344(2/3): 243-278.
|
[6] |
KR?SE B J A . Learning from delayed rewards[J]. Robotics and Autonomous Systems, 1995,15(4): 233-235.
|
[7] |
SCHULMAN J , WOLSKI F , DHARIWAL P ,et al. Proximal policy optimization algorithms[J]. arXiv preprint, 2017,arXiv:1707.06347.
|
[8] |
FOERSTER J N , ASSAEL Y M , DE FREITAS N ,et al. Learning to communicate with deep multi-agent reinforcement learning[J]. Advances in Neural Information Processing Systems, 2016,29.
|
[9] |
SHANNON C E . A mathematical theory of communication[J]. The Bell System Technical Journal, 1948,27(3): 379-423.
|
[10] |
李习彬 . 熵-信息理论与系统工程方法论的有效性分析[J]. 系统工程理论与实践, 1994,14(2): 37-42.
|
|
LI X B . Entropy-information theory and an analysis of the effectiveness of systems engineering’s methodology[J]. Systems Engineering Theory and Practice, 1994,14(2): 37-42.
|
[11] |
KAUFFMAN S A . The origins of order:self-organization and selection in evolution[M]. New York: Oxford University Press, 1993.
|
[12] |
CORNEEL C . Emergent collective motion from local interactions[D]. Ghent:Ghent University, 2017.
|
[13] |
FRANCESCHINI V , GIBERTI C , ZHENG Z M . Characterization of the Lorentz attractor by unstable periodic orbits[J]. Nonlinearity, 1993,6(2): 251-258.
|
[14] |
罗杰, 姜鑫, 郭炳晖 ,等. 群体智能系统的动力学模型与群体熵度量[J]. 中国科学:信息科学, 2022,52(1): 99-110.
|
|
LUO J , JIANG X , GUO B H ,et al. Dynamic model and crowd entropy measurement of crowd intelligence system[J]. Scientia Sinica (Informationis), 2022,52(1): 99-110.
|
[15] |
于鑫, 吴文峻, 罗杰 ,等. 面向群体共识机制的逆强化学习辨识方法[J]. 中国科学:技术科学, 2021.
|
|
YU X , WU W J , LUO J ,et al. Inverse reinforcement learning identification method for group consensus mechanism[J]. Scientia Sinica (Technologica), 2021.
|
[16] |
YU X , WU W J , FENG P ,et al. Swarm inverse reinforcement learning for biological systems[C]// Proceedings of 2021 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway:IEEE Press, 2021: 274-279.
|
[17] |
LOWE R , WU Y , TAMAR A ,et al. Multi-agent actor-critic for mixed cooperative-competitive environments[J]. arXiv preprint, 2017,arXiv:1706.02275.
|
[18] |
SUNEHAG P , LEVER G , GRUSLYS A ,et al. Value-decomposition networks for cooperative multi-agent learning[J]. arXiv preprint, 2017,arXiv:1706.05296.
|
[19] |
RASHID T , SAMVELYAN M , DE WITT C S ,et al. QMIX:monotonic value function factorisation for deep multi-agent reinforcement learning[J]. arXiv preprint, 2018,arXiv:1803.11485.
|
[20] |
HAARNOJA T , TANG H , ABBEEL P ,et al. Reinforcement learning with deep energy-based policies[C]// Proceedings of the International Conference on Machine Learning.[S.l.:s.n.], 2017: 1352-1361.
|
[21] |
MNIH V , KAVUKCUOGLU K , SILVER D ,et al. Playing atari with deep reinforcement learning[J]. Computer Science, 2013.
|
[22] |
RIPLEY B D , ROSENKRANTZ R D E T . Jaynes:papers on probability,statistics and statistical physics[J]. The Statistician, 1990,39(1): 90.
|