智能科学与技术学报 ›› 2022, Vol. 4 ›› Issue (3): 355-370.doi: 10.11959/j.issn.2096-6652.202238
刘一顺, 阳春华, 黄科科
修回日期:
2022-07-26
出版日期:
2022-09-15
发布日期:
2022-09-01
作者简介:
刘一顺(1995- ),男,中南大学自动化学院博士生,主要研究方向为供应链优化、工业过程监测、工业互联网等基金资助:
Yishun LIU, Chunhua YANG, Keke HUANG
Revised:
2022-07-26
Online:
2022-09-15
Published:
2022-09-01
Supported by:
摘要:
原料供应链是安全稳定生产的前提和保障,订单分配作为供应链的前置环节,是企业关注的重点。冶金行业原料成分复杂、供应商量大质异、信息耦合关联,当前专家决策模式面对如此复杂的订单分配问题时劳动强度大且难以适应海量信息,导致决策效率低、采购成本高、原料质量难以保障。针对该问题,提出了知识驱动的冶金企业原料供应链订单分配方法。首先,在确定多层次供应商评价体系的基础上,通过熵权法和模糊层次分析法充分利用供货数据知识和专家经验知识,结合兼容度和差异度合理分配评价指标的重要度。然后,基于TOPSIS构建多属性决策评价模型,自动获得各供应商综合绩效与排名,实现对供应商的高效评价管理。最后,综合考虑供应商供货特性知识、配矿机理知识、经营状况知识等,建立多目标订货量分配模型,自动获得复杂资源约束下各供应商的最优订货量。以国内某锌冶炼企业为例,采用原料供应链相关数据对所提方法的有效性及适用性进行验证。结果表明,所提方法可以自动地完成供应商评价、订货量分配等知识型工作,极大地降低了人工劳动强度,提高了决策效率,并有效降低了采购成本,提升了原料质量。
中图分类号:
刘一顺,阳春华,黄科科. 知识驱动的冶金企业原料供应链订单分配方法[J]. 智能科学与技术学报, 2022, 4(3): 355-370.
Yishun LIU,Chunhua YANG,Keke HUANG. Knowledge-driven order allocation method for raw material supply chain in metallurgical enterprises[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(3): 355-370.
表3
案例企业供应商评价原始数据"
供应商 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
S1 | 89 684.19 | 0.48 | 1 | 545 | 1.01 | 5 | 5 | 5 | 5 |
S2 | 28 059.36 | 0.47 | 1 | 539 | 0.98 | 5 | 5 | 4 | 4 |
S3 | 23 627.69 | 0.48 | 1 | 534 | 1.03 | 5 | 5 | 5 | 5 |
S4 | 32 992.49 | 0.48 | 2 | 528 | 1.04 | 5 | 5 | 5 | 3 |
S5 | 32 020.18 | 0.47 | 1 | 522 | 1 | 5 | 5 | 4 | 4 |
S6 | 26 295.91 | 0.49 | 1 | 522 | 1.03 | 5 | 5 | 4 | 4 |
S7 | 26 243.39 | 0.48 | 1 | 522 | 1.04 | 5 | 5 | 4 | 4 |
S8 | 7 260.03 | 0.56 | 1 | 522 | 1.02 | 5 | 5 | 4 | 3 |
… | … | … | … | … | … | … | … | … | … |
S24 | 3 194.68 | 0.49 | 1 | 458 | 0.63 | 5 | 5 | 4 | 3 |
S25 | 679.68 | 0.54 | 0 | 458 | 0.68 | 5 | 5 | 3 | 4 |
S26 | 2 953.01 | 0.49 | 0 | 458 | 0.7 | 5 | 5 | 3 | 4 |
S27 | 751.93 | 0.51 | 1 | 453 | 0.99 | 5 | 5 | 4 | 3 |
S28 | 1 627.12 | 0.47 | 1 | 453 | 1 | 5 | 5 | 5 | 4 |
S29 | 3 974.03 | 0.44 | 2 | 447 | 1.06 | 5 | 5 | 4 | 3 |
S30 | 1 758.27 | 0.49 | 1 | 441 | 0.88 | 5 | 5 | 3 | 3 |
S31 | 887.1 | 0.5 | 3 | 435 | 0.94 | 4 | 4 | 4 | 2 |
… | … | … | … | … | … | … | … | … | … |
表5
不同方法下的供应商评价指标权重"
方法 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
CRITIC法[ | 0.1644 | 0.1171 | 0.1107 | 0.0701 | 0.0924 | 0.1291 | 0.1291 | 0.1148 | 0.0723 |
变异系数法[ | 0.6057 | 0.0230 | 0.0614 | 0.0357 | 0.0814 | 0.0264 | 0.0264 | 0.0602 | 0.0798 |
熵权法 | 0.4170 | 0.0508 | 0.0310 | 0.0749 | 0.0476 | 0.0752 | 0.0752 | 0.1584 | 0.0699 |
模糊层次分析法 | 0.3289 | 0.2041 | 0.0605 | 0.1922 | 0.0918 | 0.0407 | 0.0376 | 0.0261 | 0.0181 |
所提方法 | 0.3465 | 0.1734 | 0.0546 | 0.1687 | 0.0830 | 0.0476 | 0.0451 | 0.0526 | 0.0285 |
表6
供应商评价结果"
多属性决策评价 | 人工评价 | |||||
供应商 | 绩效值 | 排名 | 供应商 | 评分 | 排名 | |
S1 | 0.9669 | 1 | S1 | 92 | 1 | |
S2 | 0.3187 | 4 | S2 | 91 | 2 | |
S3 | 0.2716 | 7 | S3 | 90 | 3 | |
S4 | 0.3697 | 2 | S4 | 89 | 4 | |
S5 | 0.3615 | 3 | S5 | 88 | 5 | |
S6 | 0.2997 | 5 | S6 | 88 | 6 | |
S7 | 0.2991 | 6 | S7 | 88 | 7 | |
S8 | 0.1102 | 18 | S8 | 88 | 8 | |
S9 | 0.1475 | 10 | S9 | 87 | 9 | |
S10 | 0.1029 | 19 | S10 | 86 | 10 | |
… | … | … | … | … | … | |
S36 | 0.0654 | 38 | S36 | 71 | 36 | |
S37 | 0.0836 | 27 | S37 | 71 | 37 | |
S38 | 0.0654 | 39 | S38 | 70 | 38 | |
S39 | 0.0823 | 29 | S39 | 70 | 39 | |
S40 | 0.0843 | 26 | S40 | 70 | 40 | |
S41 | 0.0649 | 41 | S41 | 70 | 41 | |
S42 | 0.0652 | 40 | S42 | 69 | 42 | |
S43 | 0.037 | 45 | S43 | 69 | 43 | |
S44 | 0.0632 | 42 | S44 | 66 | 44 | |
S45 | 0.0810 | 30 | S45 | 65 | 45 |
表8
各供应商所能提供原料的基本情况"
供应商 | 绩效值 | 供给能力/吨 主品位 | 单价/元 | 富含价值/元 | SiO2含量 | Pb含量 | Fe含量 | Co含量 |
S1 | 0.9669 | 1 8750.56 | 11 441 | 474 | 0.88% | 2.75% | 6.87% | 0.00263% |
S1 | 0.9669 | 1 8630.46 | 9 776 | 430 | 0.95% | 1.84% | 11.74% | 0.00638% |
S1 | 0.9669 | 6100.42 | 8 481 | 732 | 1.33% | 2.17% | 6.89% | 0.00758% |
S2 | 0.3187 | 7500.48 | 10 751 | 617 | 1.70% | 1.28% | 10.06% | 0.00555% |
S2 | 0.3187 | 1 6550.52 | 10 740 | 848 | 2.02% | 1.45% | 14.07% | 0.00339% |
S3 | 0.2716 | 1 9600.5 | 10 313 | 393 | 1.64% | 1.36% | 10.07% | 0.02474% |
S3 | 0.2716 | 2 5850.47 | 9 483 | 678 | 2.17% | 1.69% | 7.76% | 0.01507% |
… | … | …… | … | … | … | … | … | … |
S40 | 0.0843 | 6900.47 | 10 654 | 675 | 2.00% | 1.34% | 7.39% | 0.01285% |
S41 | 0.0649 | 6950.39 | 8 477 | 805 | 2.75% | 2.08% | 12.38% | 0.00326% |
S42 | 0.0652 | 2000.46 | 9 410 | 378 | 1.47% | 1.37% | 8.40% | 0.00094% |
S43 | 0.037 | 6320.38 | 7 800 | 561 | 1.05% | 1.31% | 3.24% | 0.00117% |
S44 | 0.0632 | 4200.41 | 8 892 | 741 | 1.49% | 5.03% | 15.26% | 0.01830% |
S45 | 0.0810 | 8000.46 | 10 148 | 614 | 1.49% | 0.94% | 4.21% | 0.00112% |
表9
不同订货方案下不同供应商订货量分配情况(单位:吨)"
订单号 | 供应商 | 人工决策订货 | 经济成本订货 | 所提模型 | 订单号 | 供应商 | 人工决策订货 | 经济成本订货 | 所提模型 |
1 | S1 | 1 875 | 0 | 1 875 | 29 | S19 | 758 | 0 | 0 |
2 | S1 | 1 863 | 1 863 | 1 863 | 30 | S20 | 1 350 | 0 | 1 546 |
3 | S1 | 0 | 610 | 610 | 31 | S20 | 1 000 | 1 000 | 1 000 |
4 | S2 | 250 | 0 | 750 | 32 | S21 | 1 250 | 1 250 | 0 |
5 | S2 | 1 655 | 1 655 | 1 655 | 33 | S22 | 1 506 | 1 965 | 1 965 |
6 | S3 | 1 960 | 1 960 | 0 | 34 | S23 | 780 | 0 | 0 |
7 | S3 | 1 450 | 2 585 | 2 585 | 35 | S24 | 595 | 184.4 | 595 |
8 | S4 | 444 | 752 | 752 | 36 | S25 | 695 | 695 | 695 |
9 | S4 | 0 | 0 | 0 | 37 | S26 | 2 230 | 2 230 | 2 230 |
10 | S5 | 595 | 0 | 595 | 38 | S27 | 0 | 1 815 | 0 |
11 | S5 | 1 637 | 1 637 | 1 637 | 39 | S28 | 765 | 0 | 765 |
12 | S6 | 2 850 | 2 850 | 2 850 | 40 | S29 | 670 | 670 | 670 |
13 | S6 | 150 | 0 | 180 | 41 | S30 | 660 | 1 370 | 1 370 |
14 | S7 | 1 195 | 0 | 1 150 | 42 | S31 | 725 | 775 | 775 |
15 | S8 | 200 | 0 | 490 | 43 | S32 | 855 | 1 200 | 0 |
16 | S8 | 1 750 | 1 750 | 1 750 | 44 | S33 | 950 | 1 220 | 1 220 |
17 | S9 | 1 600 | 1 800 | 1 800 | 45 | S34 | 310 | 810 | 810 |
18 | S10 | 548 | 0 | 567 | 46 | S35 | 1 000 | 1 000 | 1 000 |
19 | S11 | 1 113 | 2 120 | 2 120 | 47 | S36 | 0 | 920 | 0 |
20 | S11 | 960 | 0 | 960 | 48 | S37 | 340 | 850 | 0 |
21 | S12 | 1 870 | 0 | 0 | 49 | S38 | 635 | 635 | 0 |
22 | S13 | 1 650 | 1 650 | 1 650 | 50 | S39 | 590 | 590 | 590 |
23 | S14 | 2 630 | 2 630 | 2 630 | 51 | S40 | 690 | 339 | 0 |
24 | S15 | 950 | 0 | 1 220 | 52 | S41 | 0 | 695 | 695 |
25 | S16 | 865 | 1 955 | 1 955 | 53 | S42 | 135 | 200 | 200 |
26 | S17 | 400 | 742 | 742 | 54 | S43 | 497 | 632 | 632 |
27 | S17 | 1 696 | 1 696 | 1 696 | 55 | S44 | 215 | 420 | 0 |
28 | S18 | 0 | 1 120 | 0 | 56 | S45 | 800 | 800 | 800 |
表10
不同订货方案统计指标结果"
方案 | 人工决策订货 | 经济成本订货 | 所提模型 |
订货总量/吨 | 521 57 | 51 640 | 51 640 |
订货总价/元 | 539 661 266 | 511 304 427 | 528 423 237.4 |
金属量/吨 | 24 932 | 23 699.98 | 24 512.63 |
主品位 | 47.80% | 45.89% | 47.47% |
金属单价/元 | 21 645.33 | 21 574.04 | 21 557.18 |
富含值/元 | 33 463 424 | 34 830 326 | 34 935 660 |
供应商效用 | 11 123.98 | 9 659.23 | 11 555.13 |
平均SiO2含量 | 1.77% | 1.81% | 1.77% |
平均Pb含量 | 1.36% | 1.43% | 1.36% |
平均Fe含量 | 8.83% | 8.84% | 8.77% |
平均Co含量 | 0.0063% | 0.0099% | 0.0040% |
[1] | 柴天佑, 丁进良 . 流程工业智能优化制造[J]. 中国工程科学, 2018,20(4): 51-58. |
CHAI T Y , DING J L . Smart and optimal manufacturing for process industry[J]. Strategic Study of CAE, 2018,20(4): 51-58. | |
[2] | LIU Y S , YANG C H , HUANG K K ,et al. Non-ferrous metals price forecasting based on variational mode decomposition and LSTM network[J]. Knowledge-Based Systems, 2020,188:105006. |
[3] | 袁小锋, 王雅琳, 阳春华 ,等. 深度学习在流程工业过程数据建模中的应用[J]. 智能科学与技术学报, 2020,2(2): 107-115. |
YUAN X F , WANG Y L , YANG C H ,et al. The application of deep learning in data-driven modeling of process industries[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(2): 107-115. | |
[4] | LIU C L , WANG K , WANG Y L ,et al. Learning deep multimanifold structure feature representation for quality prediction with an industrial application[J]. IEEE Transactions on Industrial Informatics, 2022,18(9): 5849-5858. |
[5] | TSAI W C , WANG C H . Decision making of sourcing and order allocation with price discounts[J]. Journal of Manufacturing Systems, 2010,29(1): 47-54. |
[6] | WANG L , DENG T H , SHEN Z J M ,et al. Digital twin-driven smart supply chain[J]. Frontiers of Engineering Management, 2022,9(1): 56-70. |
[7] | HAMDAN S , CHEAITOU A . Supplier selection and order allocation with green criteria:an MCDM and multi-objective optimization approach[J]. Computers & Operations Research, 2017,81: 282-304. |
[8] | 袁小锋, 桂卫华, 陈晓方 ,等. 人工智能助力有色金属工业转型升级[J]. 中国工程科学, 2018,20(4): 59-65. |
YUAN X F , GUI W H , CHEN X F ,et al. Transforming and upgrading nonferrous metal industry with artificial intelligence[J]. Strategic Study of CAE, 2018,20(4): 59-65. | |
[9] | HUANG K K , TAO Z , LIU Y S ,et al. Adaptive multimode process monitoring based on mode-matching and similarity-preserving dictionary learning[J]. IEEE Transactions on Cybernetics, 2022: 1-14. |
[10] | KUMAR D , RAHMAN Z , CHAN F T S . A fuzzy AHP and fuzzy multi-objective linear programming model for order allocation in a sustainable supply chain:a case study[J]. International Journal of Computer Integrated Manufacturing, 2017,30(6): 535-551. |
[11] | 丁进良, 杨翠娥, 陈远东 ,等. 复杂工业过程智能优化决策系统的现状与展望[J]. 自动化学报, 2018,44(11): 1931-1943. |
DING J L , YANG C E , CHEN Y D ,et al. Research progress and prospects of intelligent optimization decision making in complex industrial process[J]. Acta AutomaticaSinica, 2018,44(11): 1931-1943. | |
[12] | 牟天昊, 李少远 . 流程工业控制系统的知识图谱构建[J]. 智能科学与技术学报, 2022,4(1): 129-141. |
MOU T H , LI S Y . Knowledge graph construction for control systems in process industry[J]. Chinese Journal of Intelligent Science and Technology, 2022,4(1): 129-141. | |
[13] | 桂卫华, 陈晓方, 阳春华 ,等. 知识自动化及工业应用[J]. 中国科学:信息科学, 2016,46(8): 1016-1034. |
GUI W H , CHEN X F , YANG C H ,et al. Knowledge automation and its industrial application[J]. Scientia Sinica (Informationis), 2016,46(8): 1016-1034. | |
[14] | 桂卫华, 曾朝晖, 陈晓方 ,等. 知识驱动的流程工业智能制造[J]. 中国科学:信息科学, 2020,50(9): 1345-1360. |
GUI W H , ZENG H Z , CHEN X F ,et al. Knowledge-driven process industry smart manufacturing[J]. Scientia Sinica (Informationis), 2020,50(9): 1345-1360. | |
[15] | 柴天佑, 丁进良, 桂卫华 ,等. 大数据与制造流程知识自动化发展战略研究[M]. 北京: 科学出版社, 2018. |
CHAI T Y , DING J L , GUI W H ,et al. Research on the development strategy of knowledge automation of big data and manufacturing process[M]. Beijing: Science Press, 2018. | |
[16] | GUPTA H , BARUA M K . Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS[J]. Journal of Cleaner Production, 2017,152: 242-258. |
[17] | GOVINDAN K , KADZI?SKI M , SIVAKUMAR R . Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain[J]. Omega, 2017,71: 129-145. |
[18] | WU T , BLACKHURST J . Supplier evaluation and selection:an augmented DEA approach[J]. International Journal of Production Research, 2009,47(16): 4593-4608. |
[19] | HSU B M , CHIANG C Y , SHU M H . Supplier selection using fuzzy quality data and their applications to touch screen[J]. Expert Systems With Applications, 2010,37(9): 6192-6200. |
[20] | GOLMOHAMMADI D , CREESE R C , VALIAN H ,et al. Supplier selection based on a neural network model using genetic algorithm[J]. IEEE Transactions on Neural Networks, 2009,20(9): 1504-1519. |
[21] | 李益兵, 宋东林, 王磊 . 基于混合PSO-Adam神经网络的外协供应商评价决策模型[J]. 控制与决策, 2018,33(12): 2142-2152. |
LI Y B , SONG D L , WANG L . Based on hybrid PSO-Adam neural networks decision making model for outsourcing supplier evaluation[J]. Control and Decision, 2018,33(12): 2142-2152. | |
[22] | KAWTUMMACHAI R , VAN HOP N . Order allocation in a multiple-supplier environment[J]. International Journal of Production Economics, 2005,93/94: 231-238. |
[23] | 孟懂懂 . 集中采购模式下多目标订单分配模型研究[D]. 合肥:合肥工业大学, 2016. |
MENG D D . Research on multi-objective order allocation model under centralized procurement[D]. Hefei:Hefei University of Technology, 2016. | |
[24] | LIN R H . An integrated FANP-MOLP for supplier evaluation and order allocation[J]. Applied Mathematical Modelling, 2009,33(6): 2730-2736. |
[25] | ?EBI F , OTAY ? , . A two-stage fuzzy approach for supplier evaluation and order allocation problem with quantity discounts and lead time[J]. Information Sciences, 2016,339: 143-157. |
[26] | DICKSON G W . An analysis of vendor selection systems and decisions[J]. Journal of Purchasing, 1966,2(1): 5-17. |
[27] | WEBER C A , CURRENT J R , BENTON W C . Vendor selection criteria and methods[J]. European Journal of Operational Research, 1991,50(1): 2-18. |
[28] | ZHANG W Y , DING J P , WANG Y ,et al. Multi-perspective collaborative scheduling using extended genetic algorithm with interval-valued intuitionistic fuzzy entropy weight method[J]. Journal of Manufacturing Systems, 2019,53: 249-260. |
[29] | AL-HARBI K M A S . Application of the AHP in project management[J]. International Journal of Project Management, 2001,19(1): 19-27. |
[30] | LIU Y , ECKERT C M , EARL C . A review of fuzzy AHP methods for decision-making with subjective judgements[J]. Expert Systems With Applications, 2020,161:113738. |
[31] | 王金星, 汪海涛, 姜瑛 ,等. 基于三角模糊数层次分析法的软件质量评价模型研究[J]. 计算机与数字工程, 2017,45(9): 1693-1697. |
WANG J X , WANG H T , JIANG Y ,et al. Research on software quality evaluation model based on triangular fuzzy number analytic hierarchy process[J]. Computer & Digital Engineering, 2017,45(9): 1693-1697. | |
[32] | 张益, 张俊容 . 基于兼容度和差异度的多属性评价方案优化方法[J]. 西南大学学报(自然科学版), 2010,32(11): 78-82. |
ZHANG Y , ZHANG J R . A multi-attribute optimization method based on compatibility degree and difference degree[J]. Journal of Southwest University (Natural Science Edition), 2010,32(11): 78-82. | |
[33] | 刘传修, 张菁, 刘小康 ,等. 基于IVIF-AHP与改进CRITIC法的配电网规划方案综合评估[J]. 控制工程, 2022,29(2): 322-329. |
LIU C X , ZHANG J , LIU X K ,et al. Comprehensive evaluation of distribution network planning scheme based on IVIF-AHP and improved CRITIC method[J]. Control Engineering of China, 2022,29(2): 322-329. | |
[34] | 白丽丽, 白尚旺, 党伟超 ,等. 基于离差最大化组合赋权的煤矿安全评价研究[J]. 计算机应用与软件, 2021,38(4): 82-87. |
BAI L L , BAI S W , DANG W C ,et al. Coal mine safety assessment based on maximum deviation combination empowerment[J]. Computer Applications and Software, 2021,38(4): 82-87. |
[1] | 张子菁, 章飞. 基于位姿图优化的势均衡多伯努利滤波器SLAM方法[J]. 智能科学与技术学报, 2023, 5(1): 113-120. |
[2] | 任浩, 孙备, 梁骁俊, 阳春华. 机理与数据知识驱动的湿法冶锌中性浸出过程监测方法[J]. 智能科学与技术学报, 2022, 4(4): 477-490. |
[3] | 曹翔, 孙长银. 基于不确定事件威胁度评估的UUV任务重规划[J]. 智能科学与技术学报, 2022, 4(4): 493-502. |
[4] | 张佳欣, 张森林, 刘妹琴, 董山玲, 郑荣濠. 面向海洋环境自适应采样的多AUV协同定位[J]. 智能科学与技术学报, 2022, 4(4): 503-512. |
[5] | 许一航, 刘剑, 孙长银. 基于四元数的全驱动碟形AUV单矢量反馈控制[J]. 智能科学与技术学报, 2022, 4(4): 513-521. |
[6] | 苏震, 刘殿勇, 孙达智, 梁霄. 基于路径参数一致的水下机器人编队与避障控制[J]. 智能科学与技术学报, 2022, 4(4): 533-541. |
[7] | 蔡莹皓, 杨华, 安璇, 王文硕, 杜沂东, 张嘉韬, 王志刚. 神经符号学及其应用研究[J]. 智能科学与技术学报, 2022, 4(4): 560-570. |
[8] | 赵超, 许杰, 陈星宇, 梅魁志, 兰旭光. 机器人持续学习进展与展望[J]. 智能科学与技术学报, 2022, 4(3): 308-323. |
[9] | 赖文柱, 陈德旺, 何振峰, 邓新国, GIUSEPPE CARLO Marano. 地铁列车驾驶技术发展综述:从人工驾驶到智能无人驾驶[J]. 智能科学与技术学报, 2022, 4(3): 335-343. |
[10] | 王云, 王美蕴, 周健, 邹媛媛, 李少远. 基于改进层次聚类和GL-APSO算法的配电网动态重构[J]. 智能科学与技术学报, 2022, 4(3): 410-417. |
[11] | 马帅, 傅启明, 陈建平, 冯帆, 陆悠, 李铮伟, 裘舒年. 基于双池DQN的HVAC无模型优化控制方法[J]. 智能科学与技术学报, 2022, 4(3): 426-444. |
[12] | 崔少伟, 王硕, 胡静怡, 张超凡. 面向机器人操作任务的视触觉传感技术综述[J]. 智能科学与技术学报, 2022, 4(2): 186-199. |
[13] | 徐德, 秦方博. 机器人自动轴孔装配研究进展[J]. 智能科学与技术学报, 2022, 4(2): 200-211. |
[14] | 葛悦光, 张少林, 蔡莹皓, 鲁涛, 温大勇, 王海涛, 王硕. 本体知识表示方法在机器人领域的应用研究综述[J]. 智能科学与技术学报, 2022, 4(2): 212-222. |
[15] | 胡静怡, 崔少伟, 张超凡, 张伯约, 王硕. 基于触觉感知和伺服的物体三维边缘重建方法[J]. 智能科学与技术学报, 2022, 4(2): 233-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|