智能科学与技术学报 ›› 2022, Vol. 4 ›› Issue (3): 335-343.doi: 10.11959/j.issn.2096-6652.202204
赖文柱1,2, 陈德旺1,3, 何振峰1,2, 邓新国1,2, GIUSEPPE CARLO Marano4
修回日期:
2021-03-19
出版日期:
2022-09-15
发布日期:
2022-09-01
作者简介:
赖文柱(1997- ),男,福州大学计算机与大数据学院硕士生,主要研究方向为深度强化学习与地铁无人驾驶基金资助:
Wenzhu LAI1,2, Dewang CHEN1,3, Zhenfeng HE1,2, Xinguo DENG1,2, CARLO Marano GIUSEPPE4
Revised:
2021-03-19
Online:
2022-09-15
Published:
2022-09-01
Supported by:
摘要:
基于国内外地铁列车驾驶技术的发展现状,提出并阐述了地铁列车驾驶技术发展的4个阶段为人工驾驶、自动驾驶、无人驾驶、智能无人驾驶。概括了我国无人驾驶地铁列车的建设情况,针对目前基于神经网络这类机器学习方法的列车控制方法可解释性差的弊端,引入了深度模糊系统的概念,提出了基于人机混合智能的地铁智能无人驾驶基本框图,为将处理紧急情况的专家经验、人工智能算法和无人驾驶系统结合起来,实现智能无人驾驶提供了一种具有前景的解决思路。
中图分类号:
赖文柱, 陈德旺, 何振峰, 等. 地铁列车驾驶技术发展综述:从人工驾驶到智能无人驾驶[J]. 智能科学与技术学报, 2022, 4(3): 335-343.
Wenzhu LAI, Dewang CHEN, Zhenfeng HE, et al. Overview of metro train driving technology development:from manual driving to intelligent unmanned driving[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(3): 335-343.
表1
GoA1、GoA2、GoA3、GoA4的自动化程度的基本运行功能需求"
列车运行的基本功能 | 具体功能 | GoA1 | GoA2 | GoA3 | GoA4 |
保证列车安全运行 | 安全进路 | 设备 | 设备 | 设备 | 设备 |
列车间隔控制 | 设备 | 设备 | 设备 | 设备 | |
速度监督 | 人工 | 设备 | 设备 | 设备 | |
驾驶列车 | 加速或减速 | 人工 | 设备 | 设备 | 设备 |
监控轨道 | 障碍物检测 | 人工 | 人工 | 设备 | 设备 |
避免与轨道上的人员接触 | 人工 | 人工 | 设备 | 设备 | |
监控乘客上下 | 车门和站台门控制 | 人工 | 人工 | 人工 | 设备 |
判断列车启动条件 | 人工 | 人工 | 设备 | 设备 | |
监控列车 | 列车投入运营 | 人工 | 人工 | 人工 | 设备 |
列车退出运营 | 人工 | 人工 | 人工 | 设备 | |
监督列车运营 | 人工 | 人工 | 人工 | 设备 | |
紧急状态的检测与管理 | 检测列车;检测烟火、脱轨、列车完整;紧急情况处理 | 人工 | 人工 | 人工 | 设备检测+人工处理 |
[1] | 《隧道建设(中英文)》编辑部. 世界地铁数据·2018[J]. 隧道建设(中英文), 2018,38(12): 2077-2080. |
Editorial Department of Tunnel Construction. World metro data,2018[J]. Tunnel Construction, 2018,38(12): 2077-2080. | |
[2] | 韩宝明, 陈佳豪, 杨运节 ,等. 2019 年世界城市轨道交通运营统计与分析综述[J]. 都市快轨交通, 2020,33(1): 4-8. |
HAN B M , CHEN J H , YANG Y J ,et al. Statistical analysis of urban rail transit operation in the world in 2019:a review[J]. Urban Rapid Rail Transit, 2020,33(1): 4-8. | |
[3] | 孙世超, 顾保南, 邓澄远 . 2015年中国城市轨道交通运营线路统计和分析:中国城市轨道交通“年报快递”之三[J]. 城市轨道交通研究, 2016,19(1): 1-4,9. |
SUN S C , GU B N , DENG C Y . Statistical analysis of urban rail transit lines in 2015 China—express delivery of annual report on urban rail transit Ⅲ[J]. Urban Mass Transit, 2016,19(1): 1-4,9. | |
[4] | 曹炳坤 . 世界地铁发展令人瞩目[J]. 城市公共交通, 2003(5): 331. |
CAO B K . The world’s remarkable development of subway[J]. Urban Public Transport, 2003(5): 331. | |
[5] | CAO Y , WANG Z C , LIU F ,et al. Bio-inspired speed curve optimization and sliding mode tracking control for subway trains[J]. IEEE Transactions on Vehicular Technology, 2019,68(7): 6331-6342. |
[6] | HUANG J , LIU Y , XIA Y N ,et al. Train driving data learning with S-CNN model for gear prediction and optimal driving[C]// Proceedings of 2019 Chinese Automation Congress. Piscataway:IEEE Press, 2019: 2227-2232. |
[7] | PU Q , ZHU X M , ZHANG R T ,et al. Speed profile tracking by an adaptive controller for subway train based on neural network and PID algorithm[J]. IEEE Transactions on Vehicular Technology, 2020,69(10): 10656-10667. |
[8] | YIN J T , SU S , XUN J ,et al. Data-driven approaches for modeling train control models:comparison and case studies[J]. ISA Transactions, 2020,98: 349-363. |
[9] | ZHANG C Y , CHEN D W , YIN J T ,et al. Data-driven train operation models based on data mining and driving experience for the diesel-electric locomotive[J]. Advanced Engineering Informatics, 2016,30(3): 553-563. |
[10] | 宿帅, 朱擎阳, 魏庆来 ,等. 基于DQN的列车节能驾驶控制方法[J]. 智能科学与技术学报, 2020,2(4): 372-384. |
SU S , ZHU Q Y , WEI Q L ,et al. A DQN-based approach for energy-efficient train driving control[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(4): 372-384. | |
[11] | MIDYA S , THOTTAPPILLIL R . An overview of electromagnetic compatibility challenges in European Rail Traffic Management System[J]. Transportation Research Part C:Emerging Technologies, 2008,16(5): 515-534. |
[12] | 汤力成 . 考虑ATO控制策略的城轨列车推荐速度曲线优化[D]. 北京:北京交通大学, 2018. |
TANG L C . Optimization of recommended speed curve considering ATO control strategy for urban rail transit[D]. Beijing:Beijing Jiaotong University, 2018. | |
[13] | DONG H R , NING B , CAI B G ,et al. Automatic train control system development and simulation for high-speed railways[J]. IEEE Circuits and Systems Magazine, 2010,10(2): 6-18. |
[14] | KWON S D , LEE H S . A study of unmanned light rail vehicle (K-AGT) system engineering process under safety requirement,IEC 62267[J]. Journal of the Korea Society of Systems Engineering, 2013,9(1): 1-11. |
[15] | 赵红 . 列车自动驾驶系统(ATO 系统)在地铁中的应用[J]. 电子世界, 2014(7): 30-30,32. |
ZHAO H . Application of automatic train driving system (ATO) in subway system[J]. Electronics World, 2014(7): 30-30,32. | |
[16] | 冯立勋 . 浅谈上海地铁 17 号线车辆特点[J]. 中国高新区, 2018(18): 46. |
FENG L X . On the characteristics of Shanghai metro line 17[J]. Science & Technology Industry Parks, 2018(18): 46. | |
[17] | 饶东 . 全自动运行系统地铁车辆技术[J]. 铁路技术创新, 2015(4): 13-17. |
RAO D . Metro vehicle technology with automatic operation system[J]. Railway Technical Innovation, 2015(4): 13-17. | |
[18] | 缪根欣 . 巴黎地铁 MP89 型新动车组的试验[J]. 控制与信息技术, 1995(7): 20. |
MIAO G X . Test of MP89 EMU of Paris metro[J]. Control and Information Technology, 1995(7): 20. | |
[19] | 任安萍 . 浅谈我国全自动无人驾驶地铁的发展[J]. 科技视界, 2012(25): 207-208. |
REN A P . The development of fully automated and driverless subway in China[J]. Science & Technology Vision, 2012(25): 207-208. | |
[20] | 傅世善 . 闭塞与列控概论第十讲移动闭塞概述[J]. 铁路通信信号工程技术, 2006,3(4): 61-63. |
FU S S . Introduction to block and train control lecture 10 overview of moving block[J]. Railway Signalling& Communication Engineering, 2006,3(4): 61-63. | |
[21] | 赵有明, 方鸣, 刘潍清 . 欧洲轨道交通技术类研究项目综述[J]. 现代城市轨道交通, 2014(1): 1-6. |
ZHAO Y M , FANG M , LIU W Q . Overview on technology research projects in rail transit in European[J]. Modern Urban Transit, 2014(1): 1-6. | |
[22] | 张崔中 . 我国首条全自动驾驶地铁“上岗”[J]. 新长征(党建版), 2017(5): 60. |
ZHANG C Z . China’s first fully automatic Metro “on duty”[J]. New Long March, 2017(5): 60. | |
[23] | 宗明, 郜春海, 何燕 . 基于 CBTC 控制的全自动驾驶系统[J]. 都市快轨交通, 2006,19(3): 34-36. |
ZONG M , GAO C H , HE Y . Fully automatic operation system based on CBTC[J]. Urban Rapid Rail Transit, 2006,19(3): 34-36. | |
[24] | 王浩, 林湛, 杨霓霏 ,等. 轨道交通国产化 CBTC 系统技术创新点研究[J]. 铁路计算机应用, 2014,23(1): 58-60. |
WANG H , LIN Z , YANG N F ,et al. Research on technical innovative points of domestic CBTC system of urban transit[J]. Railway Computer Application, 2014,23(1): 58-60. | |
[25] | 冷勇林 . 基于专家经验和机器学习的列车智能驾驶算法研究[D]. 北京:北京交通大学, 2013. |
LENG Y L . Intelligent train operation algorithm based on expert knowledge and machine learning[D]. Beijing:Beijing Jiaotong University, 2013. | |
[26] | 陈德旺, 章明亮, 沈镛 . 智慧地铁:基于大数据与人工智能的新型地铁系统[J]. 智能城市, 2018,4(19): 8-10. |
CHEN D W , ZHANG M L , SHEN Y . Intelligent metro:new metro system based on big data and artificial intelligence[J]. Intelligent City, 2018,4(19): 8-10. | |
[27] | WANG H N , LIU Z , ZHANG Y Y ,et al. Overview of deep reinforcement learning[J]. Frontiers of Information Technology & Electronic Engineering, 2020,21(12): 63-82. |
[28] | LIU R , GOLOVITCHER I M . Energy-efficient operation of rail vehicles[J]. Transportation Research Part A:Policy and Practice, 2003,37(10): 917-932. |
[29] | REBENTROST P , MOHSENI M , LLOYD S . Quantum support vector machine for big data classification[J]. Physical Review Letters, 2014,113(13): 130503. |
[30] | 宁滨 . 平行轨道交通系统[J]. 智能科学与技术学报, 2019,1(3): 215-218. |
NING B . Parallel rail transportation system[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(3): 215-218. | |
[31] | FIORE U , PALMIERI F , CASTIGLIONE A ,et al. Network anomaly detection with the restricted Boltzmann machine[J]. Neurocomputing, 2013,122: 13-23. |
[32] | HUANG W H , SONG G J , HONG H K ,et al. Deep architecture for traffic flow prediction:deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014,15(5): 2191-2201. |
[33] | KARPATHY A , TODERICI G , SHETTY S ,et al. Large-scale video classification with convolutional neural networks[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014: 1725-1732. |
[34] | SUTTON R S , BARTO A G . Reinforcement learning[J]. A Bradford Book, 1998,15(7): 665-685. |
[35] | CORLU C G , DE LA TORRE R , SERRANO-HERNANDEZ A , ,et al. Optimizing energy consumption in transportation:literature review,insights,and research opportunities[J]. Energies, 2020,13(5): 1115. |
[36] | 鲁明旭, 叶银忠, 马向华 . 神经网络在地铁客流预测中的应用[J]. 机械研究与应用, 2012,25(3): 86-89. |
LU M X , YE Y Z , MA X H . Application of neural network in the subway passenger flow prediction[J]. Mechanical Research & Application, 2012,25(3): 86-89. | |
[37] | AI B , MOLISCH A F , RUPP M ,et al. 5G key technologies for smart railways[J]. Proceedings of the IEEE, 2020,108(6): 856-893. |
[38] | 施浚珲 . 人工智能在无人驾驶轨道列车中的应用[J]. 科技风, 2019(31): 8-9. |
SHI J H . Application of artificial intelligence in unmanned rail train[J]. Science and technology wind, 2019 (31): 8-9. | |
[39] | 吴飞, 廖彬兵, 韩亚洪 . 深度学习的可解释性[J]. 航空兵器, 2019,26(1): 39-46. |
WU F , LIAO B B , HAN Y H . Interpretability for deep learning[J]. Aero Weaponry, 2019,26(1): 39-46. | |
[40] | 郑庆华 . 人机混合增强智能的典型应用专题前言[J]. 计算机研究与发展, 2020,57(12): 2479-2480. |
ZHENG Q H . Foreword of typical application of human machine hybrid enhanced intelligence[J]. Computer Research and Development, 2020,57(12): 2479-2480. | |
[41] | 郑南宁 . 人工智能新时代[J]. 智能科学与技术学报, 2019,1(1): 1-3. |
ZHENG N N . The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 1-3. | |
[42] | YIN J T , CHEN D W , LI L X . Intelligent train operation algorithms for subway by expert system and reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014,15(6): 2561-2571. |
[43] | ZHOU K C , SONG S J , XUE A K ,et al. Smart train operation algorithms based on expert knowledge and reinforcement learning[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2022,52(2): 716-727. |
[44] | 陈德旺, 蔡际杰, 黄允浒 . 面向可解释性人工智能与大数据的模糊系统发展展望[J]. 智能科学与技术学报, 2019,1(4): 327-334. |
CHEN D W , CAI J J , HUANG Y H . Development prospect of fuzzy system oriented to interpretable artificial intelligence and big data[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(4): 327-334. | |
[45] | 赵文迪, 陈德旺, 卓永强 ,等. 深度神经模糊系统算法及其回归应用[J]. 自动化学报, 2020,46(11): 2350-2358. |
ZHAO W D , CHEN D W , ZHUO Y Q ,et al. Deep neural fuzzy system algorithm and its regression application[J]. Acta Automatica Sinica, 2020,46(11): 2350-2358. |
[1] | 王飞跃, 缪青海, 张军平, 郑文博, 丁文文. 探讨AI for Science的影响与意义:现状与展望[J]. 智能科学与技术学报, 2023, 5(1): 1-6. |
[2] | 张军欢, 朱正一, 蔡可玮. 人工智能与量化交易的课程建设[J]. 智能科学与技术学报, 2023, 5(1): 104-112. |
[3] | 田永林, 陈苑文, 杨静, 王雨桐, 王晓, 缪青海, 王子然, 王飞跃. 元宇宙与平行系统:发展现状、对比及展望[J]. 智能科学与技术学报, 2023, 5(1): 121-132. |
[4] | 卢经纬, 程相, 王飞跃. 求解微分方程的人工智能与深度学习方法:现状及展望[J]. 智能科学与技术学报, 2022, 4(4): 461-476. |
[5] | 蔡莹皓, 杨华, 安璇, 王文硕, 杜沂东, 张嘉韬, 王志刚. 神经符号学及其应用研究[J]. 智能科学与技术学报, 2022, 4(4): 560-570. |
[6] | 黄本遵, 陈德旺, 何振峰, 邓新国, GIUSEPPE CARLO Marano. 基于人机混合智能的地铁列车无人驾驶系统研究[J]. 智能科学与技术学报, 2022, 4(4): 584-591. |
[7] | 武强, 季雪庭, 吕琳媛. 元宇宙中的人工智能技术与应用[J]. 智能科学与技术学报, 2022, 4(3): 324-334. |
[8] | 胡东伟, 冯晓璐. 大脑建模的理论框架及热点问题[J]. 智能科学与技术学报, 2021, 3(4): 412-434. |
[9] | 李亚玲, 杨林瑶, 葛俊, 覃缘琪, 王晓. 博弈5.0:基于平行系统和机器博弈的社会认知平行博弈[J]. 智能科学与技术学报, 2021, 3(4): 507-520. |
[10] | 王飞跃. 平行哲学与智能技术:平行产业与智慧社会的对偶方程与测试基础[J]. 智能科学与技术学报, 2021, 3(3): 245-255. |
[11] | 刘文, 胡琨林, 李岩, 刘钊. 移动目标轨迹预测方法研究综述[J]. 智能科学与技术学报, 2021, 3(2): 149-160. |
[12] | 芦玉琦, 陈德旺, 赵钊林. 基于AlphaZero的地铁列车大量速度曲线自动生成算法[J]. 智能科学与技术学报, 2021, 3(2): 179-184. |
[13] | 吴军, 张俊. 长江智城智慧平台框架的规划与实践[J]. 智能科学与技术学报, 2021, 3(2): 211-217. |
[14] | 刘晨熙, 刘炳宏, 张贤, 龙新南, 彭木根. 面向智能服务的雾无线接入网络:原理、技术与挑战[J]. 智能科学与技术学报, 2021, 3(1): 10-17. |
[15] | 吕宝粮, 张亚倩, 郑伟龙. 情感脑机接口研究综述[J]. 智能科学与技术学报, 2021, 3(1): 36-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|