[1] |
GAUGLER J , JAMES B , JOHNSON T ,et al. 2016 Alzheimer’s disease facts and figures[J]. Alzheimers & Dementia, 2016,12(4): 459-509.
|
[2] |
BAIN L J , JEDRZIEWSKIA K , MORRISON-BOGORAD M ,et al. Healthy brain aging:a meeting report from the Sylvan M.Cohen annual retreat of the University of Pennsylvania Institute on Aging[J]. Alzheimers & Dementia, 2008,4(6): 443-446.
|
[3] |
WEE C Y,YAPP-T , ZHANG D Q ,et al. Identification of MCI individuals using structural and functional connectivity networks[J]. NeuroImage, 2012,59(3): 2045-2056.
|
[4] |
GRUNDMAN M , PETERSEN R C , FERRIS S H ,et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials[J]. Archives of Neurology, 2004,61(1): 5-9.
|
[5] |
MISRA C , FAN Y , DAVATZIKOS C . Baseline and longitudinal patterns of brain atrophy in MCI patients,and their use in prediction of short-term conversion to AD:results from ADNI[J]. Alzheimers &Dementia, 2009,44(4): 1415-1422.
|
[6] |
Alzheimer’s Association. 2017 Alzheimer’s disease facts and figures[R]. 2017.
|
[7] |
BRUNETTI M , BELARDINELLI P , GRATTA C D ,et al. Human brain activation elicited by the localization of sounds delivering at attended or unattended positions:an fMRI/MEG study[J]. Cognitive Processing, 2006,7(1): 116-117.
|
[8] |
LEE J H , DURAND R , GRADINARU V ,et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring[J]. Nature, 2010,465(7299): 788-792.
|
[9] |
KEVIN W , DOUG W , MATTHIAS S ,et al. Correspondence of visual evoked potentials with FMRI signals in human visual cortex[J]. Brain Topography, 2008,21(2): 86-92.
|
[10] |
ROSAM J , PORTUGAL L , HAHNT ,et al. Sparse network-based models for patient classification using fMRI[J]. NeuroImage, 2015,105(3): 493-506.
|
[11] |
STAM C J . Modern network science of neurological disorders[J]. Nature Reviews Neuroscience, 2014,15(10): 683-695.
|
[12] |
WEE C Y , YAP P T , ZHANG D Q ,et al. Identification of MCI individuals using structural and functional connectivity networks[J]. NeuroImage, 2012,59(3): 2045-2056.
|
[13] |
SPORNS O . Networks of the brain[J]. General, 2011.
|
[14] |
SMITH S M , MILLER K L , SALIMIK G ,et al. Network modelling methods for fMRI[J]. NeuroImage, 2011,54(2): 875-891.
|
[15] |
GOTTS S J , SIMMONS W K , MILBURY L A ,et al. Fractionation of social brain circuits in autism spectrum disorders[J]. Brain:A Journal of Neurology, 2012,135(9): 2711-2725.
|
[16] |
THEIJE C G M D , WU J B , SILVA S L D ,et al. Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management[J]. European Journal of Pharmacology, 2011,S1(9): 70-80.
|
[17] |
FAN Y , BROWNDYKE J N . MCI diagnosis via manifold based classification of functional brain networks[J]. Alzheimers & Dementia, 2010,6(6):16.
|
[18] |
WEE C Y , YAP P T , ZHANG D Q ,et al. Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification[J]. Brain Structure & Function, 2014,219(2): 641-656.
|
[19] |
YU R , ZHANG H , AN L ,et al. Correlation-weighted sparse group representation for brain network construction in MCI classification[M]. Springer International Publishing, 2016.
|
[20] |
LIU F , WEE C Y , CHEN H ,et al. Inter-modality relationship constrained multi-task feature selection for AD/MCI classification[C]// Miccai International Conference on Medical Image Computing &Computer-assisted Intervention, 2012: 308-315.
|
[21] |
SUPEKAR K , MENON V , RUBIN D ,et al. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease[J]. PloS Computational Biology, 2008,4(6): 1-11.
|
[22] |
HUANG S , LI J , SUN L ,et al. Learning brain connectivity of Alzheimer's disease from neuroimaging data[C]// Conference on Neural Information Processing Systems. 2009: 808-816.
|
[23] |
LI W K , QIAO L S , ZHANG L M ,et al. Functional brain network estimation with time series self-scrubbing[J]. IEEE Journal of Biomedical and Health Informatics, 2019,99:1.
|
[24] |
SMITH S M , MILLER K L , SALIMI K G ,et al. Network modelling methods for FMRI[J]. NeuroImage, 2011,54(2): 875-891.
|
[25] |
LI W , WANG Z , ZHANG L ,et al. Remodeling Pearson's correlation for functional brain network estimation and autism spectrum disorder identification[J]. Frontiers in Neuroinformatics, 2017,11:55.
|
[26] |
LEE H , LEE D S , KANG H ,et al. Sparse brain network recovery under compressed sensing[J]. IEEE Transactions on Medical Imaging, 2011,30(5): 1154-1165.
|
[27] |
ZHOU L , WANG L , OGUNBONA P . Discriminative sparse inverse covariance matrix:application in brain functional network classification[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2014: 3097-3104.
|
[28] |
SPORNS O , TONONI G,K?TTER R . The human connectome:a structural description of the human brain[J]. Plos Computational Biology, 2005,1(4):42.
|
[29] |
QIAO L , ZHANG H , KIM M ,et al. Estimating functional brain networks by incorporating a modularity prior[J]. NeuroImage, 2016,(141): 399-407.
|
[30] |
WEE C Y , YAP P T , SHEN D . Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks[J]. CNS Neuroscience & Therapeutics, 2016,22(3).
|
[31] |
LI W , ZHANG L , QIAO L ,et al. Towards a better estimation of functional brain network for mild cognitive impairment identification:a transfer learning view[J]. bioRxiv, 2019: 684-779.
|
[32] |
LIU X , BOURENNANE S , FOSSATI C . Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis[J]. IEEE Transactions on Geoscience & Remote Sensing, 2012,50(10): 3717-3724.
|
[33] |
SPORNS O , TONONI G,K?TTERR . The human connectome:a structural description of the human brain[J]. PloS Computational Biology, 2005,1(4):42.
|
[34] |
SMITH S M , VIDAURRE D , BECKMANNC F ,et al. Functional connectomics from resting-state fMRI[J]. Trends in Cognitive Sciences, 2013,17(12): 666-682.
|
[35] |
FRIEDMAN J , HASTIE T , TIBSHIRANI R . Sparse inverse covariance estimation with the graphical lasso[J]. Biostatistics, 2008,9(3):432.
|
[36] |
HORN A , OSTWALD D , REISERT M ,et al. The structural-functional connectome and the default mode network of the human brain[J]. NeuroImage, 2014,102: 142-151.
|
[37] |
FRISTON K J , KAHAN J , BISWAL B ,et al. A DCM for resting state fMRI[J]. NeuroImage, 2013,94(100):396.
|
[38] |
QIAO L , ZHANG H , KIM M ,et al. Estimating functional brain networks by incorporating a modularity prior[J]. NeuroImage, 2016,141:399.
|
[39] |
MARDIA K V , KENT J T , BIBBY J M . Multivariate analysis[J]. Mathematical Gazette, 1979,37(1): 123-131.
|
[40] |
LEE H , DONG S L , KANG H ,et al. Sparse brain network recovery under compressed sensing[J]. IEEE Transactions on Medical Imaging, 2011,30(5): 1154-1165.
|
[41] |
DONOHO D L , ELAD M . Optimally sparse representation in general (nonorthogonal) dictionaries via ?[J]. Proceedings of the National Academy of Sciences, 2003,100(5): 2197-2202.
|
[42] |
MEINSHAUSEN N , BüHLMANN P . High-dimensional graphs and variable selection with the Lasso[J]. Annals of Statistics, 2006,34(3): 1436-1462.
|
[43] |
TOMIOKA R , SUGIYAMA M . Dual augmented Lagrangian method for efficient sparse reconstruction[J]. IEEE Signal Processing Letters, 2009,16(12): 1067-1070.
|
[44] |
JACK C R , BERNSTEIN M A , FOX N C ,et al. The Alzheimer's disease neuroimaging initiative (ADNI):MRI methods[J]. Journal of Magnetic Resonance Imaging, 2010,27(4): 685-691.
|
[45] |
ZHOU Y Y , QIAO L S , LI W K ,et al. Simultaneous estimation of lowand high-order functional connectivity for identifying mild cognitive impairment[J]. Frontiers in Neuroinformatics, 2018,12:3.
|
[46] |
YAN C G , ZANG Y F . DPARSF:a MATLAB toolbox for “pipeline”data analysis of resting-state fMRI[J]. Frontiers in Systems Neuroscience, 2010,4(13):13.
|
[47] |
CHEN X , ZHANG H , GAO Y ,et al. High-order resting-state functional connectivity network for MCI classification[J]. Human Brain Mapping, 2016,37(9): 3282-3296.
|
[48] |
CHEN X , ZHANG H , ZHANG L ,et al. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification[J]. Human Brain Mapping, 2017,38(10):5019.
|
[49] |
POWER J D , BARNES K A , SNYDER A Z ,et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion[J]. NeuroImage, 2012,5(3): 2142-2154.
|
[50] |
TZOURIOM N , LANDEAU B , PAPATHANASSIOU D ,et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. NeuroImage, 2002,15(1): 273-289.
|
[51] |
郑南宁 . 人工智能新时代[J]. 智能科学与技术学报, 2019,1(1): 1-3.
|
|
ZHENG N N . The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 1-3.
|
[52] |
张钹 . 人工智能进入后深度学习时代[J]. 智能科学与技术学报, 2019,1(1): 4-6.
|
|
ZHANG B . Artificial intelligence is entering the post deep-learning era[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 4-6.
|