Telecommunications Science ›› 2021, Vol. 37 ›› Issue (1): 22-31.doi: 10.11959/j.issn.1000-0801.2021009
• Comprehensive Review • Previous Articles Next Articles
Yingzhao ZHU, Man LI
Revised:
2020-12-28
Online:
2021-01-20
Published:
2021-01-01
CLC Number:
Yingzhao ZHU, Man LI. Review on meta-learning[J]. Telecommunications Science, 2021, 37(1): 22-31.
[1] | KRIZHEVSKY A , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks[C]// Proceedings of 26th Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2012: 1097-1105. |
[2] | RUMELHART D E , HINTON G E , WILLIAMS R J . Learning representations by back propagating errors[J]. Nature, 1986,323(6088): 533-536. |
[3] | GRAVES A , MOHAMED A , HINTON G . Speech recognition with deep recurrent neural networks[C]// Proceedings of the 38th IEEE International Conference on Acoustics,Speech,and Signal Processing. Piscataway:IEEE Press, 2013: 6645-6649. |
[4] | BOTTOU L . From machine learning to machine reasoning[J]. Machine Learning, 2014,94(2): 133-149. |
[5] | HINTON G E , OSINDERO S , TEH Y W . A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18(7): 1527-1554. |
[6] | 龙慧, 朱定局, 田娟 . 深度学习在智能机器人中的应用研究综述[J]. 计算机科学, 2018,45(2): 43-47,52. |
LONG H , ZHU D J , TIAN J . Research on deep learning used in intelligent robots[J]. Computer Science, 2018,45(2): 43-47,52. | |
[7] | 万里鹏, 兰旭光, 张翰博 ,等. 深度强化学习理论及其应用综述[J]. 模式识别与人工智能, 2019,32(1): 67-81. |
WANG L P , LAN X G , ZHANG H B ,et al. A review of deep reinforcement learning theory and application[J]. Pattern Recognition and Artificial Intelligence, 2019,32(1): 67-81. | |
[8] | 李晨溪, 曹雷, 张永亮 ,等. 基于知识的深度强化学习研究综述[J]. 系统工程与电子技术, 2017,39(11): 2603-2613. |
LI C X , CAO X , ZHANG Y L ,et al. Knowledge-based deep reinforcement learning:a review[J]. Systems Engineering and Electronics, 2017,39(11): 2603-2613. | |
[9] | MATTEO H , JOSEPH M , HADO V H . Rainbow:combining improvements in deep reinforcement learning[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2018: 3215-3222. |
[10] | ESHRATIFAR A , ABRISHAMI M , EIGEN D ,et al. A meta-learning approach for custom model training[C]// Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2019: 9937-9938. |
[11] | SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[C]// Proceedings of International Conference on Learning Representations, 2015. |
[12] | HE K , ZHANG X , REN S ,et al. Deep residual learning for image recognition[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 770-778. |
[13] | SZEGEDY C , LIU W , JIA Y ,et al. Going deeper with convolutions[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015: 1-9. |
[14] | HINTON G , PLAUT D . Using fast weights to deblur old memories[C]// Proceedings of the 9th Annual Conference of the Cognitive Science Society. Hove:Psychology Press, 1987: 177-186. |
[15] | FINN C , ABBEEL P , LEVINE S . Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of International Conference on Machine Learning. New York:ACM Press, 2017: 1126-1135. |
[16] | FINN C , RAJESWARAN A , KAKADE S ,et al. Online meta-learning[C]// Proceedings of International Conference on Machine Learning. New York:ACM Press, 2019: 1920-1930. |
[17] | KINGMA D P , BA J . Adam:a method for stochastic optimization[C]// Proceedings of International Conference on Learning Representations. Palo Alto:AAAI Press, 2015: 1-15. |
[18] | ANDRYCHOWICZ M , DENIL M , COLMENAREJO S G ,et al. Learning to learn by gradient descent by gradient descent[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2016: 3988-3996. |
[19] | PARK E , REPIN D , SHEN L ,et al. Meta-curvature[C]// Proceedings of annual conference on neural information processing systems. Cambridge:MIT Press, 2019: 3309-3319. |
[20] | HOUTHOOFT R , CHEN R Y , ISOLA P ,et al. Evolved policy gradients[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2018: 5405-5414. |
[21] | LI Y Y , YANG Y X , ZHOU W ,et al. Feature-critic networks for heterogeneous domain generalization[C]// Proceedings of International Conference on Machine Learning. New York:ACM Press, 2019: 3915-3924. |
[22] | SUNG F , YANG Y X , ZHANG L ,et al. Learning to compare:relation network for few-shot learning[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 1199-1208. |
[23] | KOSH G , ZEMEL R , SALAKHUTDINOV R . Siamese neural networks for one-shot image recognition[C]// Proceedings of International Conference on Machine Learning. New York:ACM Press, 2015: 6-36. |
[24] | VINYALS O , BLUNDELL , LILLICRAP T ,et al. Matching networks for one shot learning[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2016: 3630-3638. |
[25] | SHELL J , SWERSKY K , ZEMEL R S . Prototypical networks for few shot learning[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2017: 4077-4087. |
[26] | GARCIA V , BRUNA J . Few-shot learning with graph neural networks[C]// Proceedings of International Conference on Learning Representations. Palo Alto:AAAI Press, 2018: 1-12. |
[27] | REN M , LIAO R , FETAYA E ,et al. Incremental few-shot learning with attention attractor networks[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2019: 5276-5286. |
[28] | HOU R , CHANG H , MA B P ,et al. Cross attention network for few-shot classification[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2019: 4005-4016. |
[29] | FRANCESCHI L , FRASCONI P , SALZO S ,et al. Bilevel programming for hyperparameter optimization and meta-learning[C]// Proceedings of International Conference on Machine Learning. New York:ACM Press, 2018: 1563-1572. |
[30] | LECUN Y , BOTTOU L , BENGIO ,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11): 2278-2324. |
[31] | ZOPH B , LE Q V . Neural architecture search with reinforcement learning[C]// Proceedings of International Conference on Machine Learning. New York:ACM Press, 2017: 459-468. |
[32] | REAL E AGGARWAL , HUANG Y P ,et al. Regularized evolution for image classifier architecture search[C]// Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2019: 4780-4789. |
[33] | HOCHREITER S , YOUNGER A S , CONWELL P R ,et al. Learning to learn using gradient descent[C]// Proceedings of International Conference on Artificial Neural Networks. Berlin:Springer Press, 2001: 87-94. |
[34] | SANTOTO A , BARTUNOV S , BOTVINICK M ,et al. Meta learning with memory-augmented neural networks[C]// Proceedings of International Conference on Machine Learning. New York:ACM Press, 2016: 1842-1850. |
[35] | RAKELLY K , ZHOU A QUILLEN , FINN C ,et al. Efficient off-policy meta-reinforcement learning via probabilistic context variables[C]// Proceedings of International Conference on Machine Learning. New York:ACM Press, 2019: 5331-5340. |
[36] | GIDARIS S , KOMODAKIS N . Dynamic few-shot visual learning without forgetting[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 4367-4375. |
[37] | REN M , LIAO R , FETAYA E ,et al. Incremental few-shot learning with attention attractor networks[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2019: 5276-5286. |
[38] | KANG B , LIU Z , WANG X ,et al. Few-shot object detection via feature reweighting[C]// Proceedings of IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2019: 8419-8428. |
[39] | MANUEL J , RUA P , ZHU X ,et al. Incremental few-shot object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020. |
[40] | GUO J Z , ZHU X Y , ZHAO C X ,et al. Learning meta face recognition in unseen domains[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020. |
[41] | NGUYEN B D , DO T T , NGUYEN B X ,et al. Overcoming data limitation in medical visual question answering[C]// Proceedings of Medical Image Computing and Computer Assisted Intervention Society. Berlin:Springer Press, 2019: 522-530. |
[42] | WANG T , LIU M , TAO A ,et al. Few-shot video-to-video synthesis[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2019: 5014-5025. |
[43] | 刘乃军, 鲁涛, 蔡莹皓 ,等. 机器人操作技能学习方法综述[J]. 自动化学报, 2019,45(3): 458-470. |
LIU N J , LU T , CAI Y H ,et al. A review of robot manipulation skills learning methods[J]. Acta Automatica Sinica, 2019,45(3): 458-470. | |
[44] | 李帅龙, 张会文, 周维佳 . 模仿学习方法综述及其在机器人领域的应用[J]. 计算机工程与应用, 2019,55(4): 17-30. |
LI S L , ZHANG H W , ZHOU W J . Review of imitation learning methods and its application in robotics[J]. Computer Engineering and Applications, 2019,55(4): 17-30. | |
[45] | 王薇, 吴锋, 周风余 . 机器人操作技能自主认知与学习的研究现状与发展趋势[J]. 山东大学学报, 2019,49(6): 11-24. |
WANG W , WU F , ZHOU F Y . Research status and development trend of autonomous cognition and learning of robot manipulation skills[J]. Journal of Shandong University ( Engineering Science) , 2019,49(6): 11-24. | |
[46] | DUAN Y , ANDRYCHOWICZ M , STADIE B C ,et al. One-shot imitation learning[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2017: 1087-1098. |
[47] | FINN C , YU T H , ZHANG T H ,et al. One-shot visual imitation learning via meta-learning[C]// Proceedings of Annual Conference on Robot Learning. Cambridge:MIT Press, 2017: 357-368. |
[48] | YU T H FINN C , XIE A ,et al. One-shot imitation from observing humans via domain-adaptive meta-learning[C]// Proceedings of International Conference on Learning Representations, 2018. |
[49] | NAGABANDI A , CLAVERA I , LIU S ,et al. Learning to adapt in dynamic,real-world environments through meta-reinforcement learning[C]// Proceedings of International Conference on Learning Representations, 2019. |
[50] | GARG V , KALAI A . Supervising unsupervised learning[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2018: 4996-5006. |
[51] | ANTONIOU A , STORKEY A . Learning to learn by self- critique[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2019: 9936-9946. |
[52] | KLEJCH O , FAINBERG J , BELL P . Learning to adapt:a meta-learning approach for speaker adaptation[C]// Proceedings of the 19th Annual Conference of the International Speech Communication Association, 2018. |
[53] | HSU J Y , CHEN Y J , LEE H Y . Meta learning for end-to-end low-resource speech recognition[C]// Proceedings of International Conference on Acoustics,Speech and Signal Processing, 2019. |
[54] | LI J , WONG Y , ZHAO Q ,et al. Learning to learn from noisy labeled data[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 5051-5059. |
[55] | SHU J , XIE Q , YI L ,et al. Meta-weight-net:learning an explicit mapping for sample weighting[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2019: 1917-1928. |
[56] | CHEN S Y , WANG W Y , PAN S J . MetaQuant:learning to quantize by learning to penetrate non-differentiable quantization[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2019: 3918-3928. |
[57] | BALAJI Y , SANKARANARAYANAN S , CHELLAPPA R . MetaReg:towards domain generalization using meta- regularization[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2018: 1006-1016. |
[58] | LI D , YANG Y , SONG Y ,et al. Learning to generalize:meta-learning for domain generalization[C]// Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2018: 3490-3497. |
[59] | BROCK A , LIM T , RITCHIE J M ,et al. SMASH:one-shot model architecture search through hyper networks[C]// Proceedings of International Conference on Learning Representations.[S.l.:s.n.], 2018. |
[60] | LEE K , MAJI S , RAVICHANDRAN A ,et al. Meta-learning with differentiable convex optimization[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 10657-10665. |
[61] | 李茂莹, 杨柳, 胡清华 . 同构迁移学习理论和算法研究进展[J]. 南京信息工程大学学报(自然科学版), 2019,11(3): 269-277. |
LI M Y , YANG L , HU Q H . A survey on theories and algorithms about homogeneous transfer learning[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition) , 2019,11(3): 269-277. | |
[62] | 赵鹏, 高浩渊, 姚晟 ,等. 面向弱匹配的跨媒异构迁移学习[J]. 计算机辅助设计与图形学学报, 2019,31(11): 1963-1972. |
ZHAO P , GAO H Y , YAO S ,et al. Cross-media heterogeneous transfer learning oriented to semi-paired problem[J]. Journal of Computer-Aided Design & Computer Graphics, 2019,31(11): 1963-1972. | |
[63] | 朱应钊 . 异构迁移学习研究综述[J]. 电信科学, 2020,36(3): 100-110. |
ZHU Y Z . Review on heterogeneous transfer learning[J]. Telecommunications Science, 2020,36(3): 100-110. |
[1] | Zehua GUO, Haowen ZHU, Tongwen XU. Network modal innovation for distributed machine learning [J]. Telecommunications Science, 2023, 39(6): 44-51. |
[2] | Ruihong JIANG, Yizhe FENG, Yaohua SUN, Haina ZHENG. A survey on networking key technologies for LEO satellite network [J]. Telecommunications Science, 2023, 39(2): 37-47. |
[3] | Aihua LI, Xiaobo WU, Chao CHEN, Bin WEI, Yuanyuan SHI. Big data intelligent analysis technology for 5G network [J]. Telecommunications Science, 2022, 38(8): 129-139. |
[4] | Mingwei ZHU. AI engineering technology solutions in network intelligence [J]. Telecommunications Science, 2022, 38(2): 157-165. |
[5] | Ruiying CHENG, Pan ZHANG, Yu XIAO, Yujie QIAO, Anyi ZHANG. Time series data based AI operation and maintenance system of cloud network collaboration platform [J]. Telecommunications Science, 2022, 38(11): 24-35. |
[6] | Zhihong CHEN, Mingxiao WANG. Application of computer vision in intelligent security [J]. Telecommunications Science, 2021, 37(8): 142-147. |
[7] | Shuo YUAN, Yijing REN, Zeyu WANG, Yaohua SUN, Mugen PENG. Software defined intelligent satellite-terrestrial integrated wireless network [J]. Telecommunications Science, 2021, 37(6): 66-77. |
[8] | Jianwu ZHANG, Luxin WANG, Lingfen SUN, Qianye ZHANG, Hangguan SHAN. An survey on application of artificial intelligence in 5G system [J]. Telecommunications Science, 2021, 37(5): 14-31. |
[9] | Zhiyong LIU, Zhongjiang HE, Yilong RUAN, Junfeng SHAN, Chao ZHANG. Big data security features and operation practices [J]. Telecommunications Science, 2021, 37(5): 160-169. |
[10] | Junhui ZHAO, Danyang ZHANG, Lin HE. Analysis and prospect of communication technology in smart urban rail [J]. Telecommunications Science, 2021, 37(4): 1-13. |
[11] | Tong ZHANG,Yijing REN,Shi YAN,Mugen PENG. Artificial intelligence driven 6G networks:endogenous intelligence [J]. Telecommunications Science, 2020, 36(9): 14-22. |
[12] | Bin DONG. Systematic construction of operator’s intelligent customer service [J]. Telecommunications Science, 2020, 36(7): 118-125. |
[13] | Tao PANG,Haihua QIU,Biying PAN. Research on artificial intelligence key technologies of mobile terminal [J]. Telecommunications Science, 2020, 36(5): 145-151. |
[14] | Kun LI,Jing ZHANG,Xiao LI,Shi JIN. An overview of artificial intelligence assisted channel estimation [J]. Telecommunications Science, 2020, 36(10): 46-55. |
[15] | Xian ZHANG,Xueyan CAO,Binghong LIU,Yuan AI,Chenxi LIU. Smart fog radio access networks for 6G:architecture and key technologies [J]. Telecommunications Science, 2020, 36(1): 3-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|