Telecommunications Science ›› 2021, Vol. 37 ›› Issue (4): 1-13.doi: 10.11959/j.issn.1000-0801.2021029
• Comprehensive Review • Next Articles
Junhui ZHAO1,2, Danyang ZHANG1, Lin HE1
Revised:
2021-01-19
Online:
2021-04-20
Published:
2021-04-01
Supported by:
CLC Number:
Junhui ZHAO, Danyang ZHANG, Lin HE. Analysis and prospect of communication technology in smart urban rail[J]. Telecommunications Science, 2021, 37(4): 1-13.
"
通信解决方案 | 系统架构 | 通信模式 | 信号系统数据吞吐 | 理论最高支持列车运行速度 | 优势与限制 |
TBTC | 轨道电路 | 单向传输车到地信息 | / | 80 km/h | 无须无线传输,但基于电气化轨道电路的安全隐患高 |
WLAN | 轨旁 AP+无线传输媒介 | 车地间双向实时传输 | 3 Mbit/s | 140 km/h | 支持无线传输,但数据速率低,车地传输设备复杂,极易受到干扰 |
LTE-M | 轨旁BBU+RRU+无线传输媒介 | 车地间双向实时传输 | 10 Mbit/s | 200 km/h | 提供更高的数据传输速率,但频谱资源稀缺,频谱利用率较低 |
LTE-M+MEC | 同 上 并 增 加MEC服务器 | 车地间双向实时传输 | ≥10 Mbit/s | 200 km/h | 满足较高数据传输速率并优化传输时延,但成本较高 |
T2T | 在 CBTC 系统基础上增加车车通信设备,简化车地通信 | 车地间双向实时传输,并增加冗余车到车通信 | WLAN:≥3 Mbit/s LTE-M:≥10 Mbit/s | WLAN:140 km/h LTE-M:200 km/h | 提升列车安全性能以及运行效率,但频谱资源限制导致新的资源分配问题 |
5G-M | 基于5G通信系统 | 车地间双向实时传输 | ≥500 Mbit/s | 250 km/h | 数据传输速率极高,但覆盖范围小,存在频繁切换以及高昂的建设成本问题 |
[1] | SONG H F , SCHNIEDER E . Availability and performance analysis of train-to-train data communication system[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,20(7): 2786-2795. |
[2] | JAHANZEB F , SOLER J . Radio communication for communications-based train control (CBTC):a tutorial and survey[J]. IEEE Communications Surveys & Tutorials, 2017,19(3): 1377-1402. |
[3] | CHEN R , LONG W X , MAO G Q ,et al. Development trends of mobile communication systems for railways[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 3131-3141. |
[4] | 郜春海, 包峰 . 全自动运行系统的兴起与未来之路[J]. 城市轨道交通, 2019(2): 18-19. |
GAO C H , BAO F . The rise and future of fully automatic operation system[J]. China Metros, 2019(2): 18-19. | |
[5] | 宁滨, 郜春海, 李开成 ,等. 中国城市轨道交通全自动运行系统技术及应用[J]. 北京交通大学学报, 2019,43(1): 1-6. |
NING B , GAO C H , LI K C ,et al. Technology and application of fully automatic operation system for urban rail transit in China[J]. Journal of Beijing Jiaotong University, 2019,43(1): 1-6. | |
[6] | ZHU L , YAO D Y , ZHAO H L . Reliability analysis of nextgeneration CBTC data communication systems[J]. IEEE Transactions on Vehicular Technology, 2019,68(3): 2024-2034. |
[7] | 鲁玉龙, 沈海燕, 解亚龙 ,等. 边缘计算融合NB-IoT在高铁联调联试中的关键技术研究[J]. 中国设备工程, 2020(7): 175-177. |
LU Y L , SHEN H Y , XIE Y L ,et al. Research on the key technology of edge computing fusion NB-IoT in high-speed rail joint test[J]. China Plant Engineering, 2020(7): 175-177. | |
[8] | 谢红霞, 孙林祥 . 轨道交通车-地通信无线局域网技术应用[J]. 铁道通信信号, 2020,56(2): 63-66. |
XIE H X , SUN L X . Application of WLAN technology for rail transit train-ground communication[J]. Railway Signalling &Communication, 2020,56(2): 63-66. | |
[9] | 路向阳, 李东林, 李雷 ,等. 智慧城轨下智慧车辆装备技术的研究与展望[J]. 机车电传动, 2018(6): 1-8. |
LU X Y , LI D L , LI L ,et al. Study and prospect of equipment technology for smart rolling stock in smart urban rail transit system[J]. Electric Drive for Locomotives, 2018(6): 1-8. | |
[10] | MAO Q , HU F , HAO Q . Deep learning for intelligent wireless networks:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 2595-2621. |
[11] | LIU X , XU Y H , CHENG Y P ,et al. A heterogeneous information fusion deep reinforcement learning for intelligent frequency selection of HF communication[J]. China Communications, 2018,15(9): 73-84. |
[12] | CUI Y , MARTIN U , ZHAO W T . Calibration of disturbance parameters in railway operational simulation based on reinforcement learning[J]. Journal of Rail Transport Planning &Management, 2016,6(1): 1-12. |
[13] | YANG Z P , ZHU F Q , LIN F . Deep-reinforcement-learning-based energy management strategy for supercapacitor energy storage systems in urban rail transit[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,22(2): 1150-1160. |
[14] | ZHAO J H , ZHANG Y , NIE Y W ,et al. Intelligent resource allocation for train-to-train communication:a multi-agent deep reinforcement learning approach[J]. IEEE Access, 2020(8): 8032-8040. |
[15] | 谭俊杰, 梁应敞 . 面向智能通信的深度强化学习方法[J]. 电子科技大学学报, 2020,49(2): 169-181. |
TAN J J , LIANG Y C . Deep reinforcement learning for intelligent communications[J]. Journal of University of Electronic Science and Technology of China, 2020,49(2): 169-181. | |
[16] | WANG X X , LIU L J , ZHU L ,et al. Train-centric CBTC meets age of information in train-to-train communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2020,21(10): 4072-4085. |
[17] | WANG X X , LIU L J , TANG T ,et al. Enhancing communication-based train control systems through train-to-train communications[J]. Transactions on Intelligent Transportation Systems, 2019,20(4): 1544-1561. |
[18] | PASCOE R D , EICHORN T N . What is communication-based train control[J]. IEEE Vehicular Technology Magazine, 2009,4(4): 16-21. |
[19] | WANG H W , YU F R , JIANG H L . Modeling of radio channels with leaky coaxial cable for LTE-M based CBTC systems[J]. IEEE Communications Letters, 2016,20(5): 1038-1041. |
[20] | ZHAO J H , LIU J , NI S J ,et al. Enhancing transmission on hybrid precoding based train-to-train communication[J]. Mobile Networks and Applications, 2020,25(5): 2082-2091. |
[21] | 倪善金, 赵军辉 . 5G无线通信网络物理层关键技术[J]. 电信科学, 2015,31(12): 48-53. |
NI S J , ZHAO J H . Key technologies in physical layer of 5G wireless communications network[J]. Telecommunications Science, 2015,31(12): 48-53. | |
[22] | ANDREAS L , STRANG T , RICO-GARCíA C . A reliable surveillance strategy for an autonomous rail collision avoidance system[C]// Proceedings of the 15th ITS World Congress. New York:ACM Press, 2008. |
[23] | 何芊颖 . 基于TSSM的车车通信系统车载移动授权模块的建模和验证[D]. 北京:北京交通大学, 2017. |
HE Q Y . TSSM-based modeling and verification of VBTC MA unit in VOBC[D]. Beijing:Beijing Jiaotong University, 2017. | |
[24] | 徐纪康 . 基于车-车通信的新型CBTC系统分析[J]. 铁道通信信号, 2014,50(6): 78-80. |
XU J K . Analysis of a new CBTC system based on train-train communication[J]. Railway Signalling & Communication, 2014,50(6): 78-80. | |
[25] | 林俊亭, 王晓明, 党垚 ,等. 城市轨道交通列车碰撞防护系统设计与研究[J]. 铁道科学与工程学报, 2015,12(2): 407-413. |
LIN J T , WANG X M , DANG Y ,et al. Design and research of the improved train control system with collision avoidance system for urban mass transit[J]. Journal of Railway Science and Engineering, 2015,12(2): 407-413. | |
[26] | 郜城城, 周旭, 范鹏飞 ,等. 移动边缘计算技术在高铁通信网络中的应用[J]. 计算机系统应用, 2018,27(8): 56-62. |
GAO C C , ZHOU X , FAN P F ,et al. Application of mobile edge computing technology in high speed rail communication network[J]. Computer Systems & Applications, 2018,27(8): 56-62. | |
[27] | 李斌 . 基于 MEC 的高速铁路无线通信网络优化方案[J]. 电信科学, 2019,35(11): 88-95. |
LI B . Wireless communication network optimization scheme for high-speed railway based on MEC[J]. Telecommunications Science, 2019,35(11): 88-95. | |
[28] | HALTUF M . Shift rail JU from member state’s point of view[J]. Transportation Research Procedia, 2016(14): 1819-1828. |
[29] | ZHANG J Y , BJ?RNSON E , MATTHAIOU M ,et al. Prospective multiple antenna technologies for beyond 5G[J]. IEEE Journal on Selected Areas in Communications, 2020,38(8): 1637-1660. |
[30] | YAN L , FANG X M , WANG X B ,et al. AI-enabled sub-6-GHz and mm-wave hybrid communications:considerations for use with future HSR wireless systems[J]. IEEE Vehicular Technology Magazine, 2020,15(3): 59-67. |
[31] | 刘云毅, 赵军辉, 王传云 . 高速铁路宽带无线通信系统越区切换技术[J]. 电信科学, 2017,33(11): 37-46. |
LIU Y Y , ZHAO J H , WANG C Y . Handover technology in high-speed railway broadband wireless communication system[J]. Telecommunications Science, 2017,33(11): 37-46. | |
[32] | 艾渤, 章嘉懿, 何睿斯 ,等. 面向智能高铁业务和应用的 5G基础理论与关键技术[J]. 中国科学基金, 2020,34(2): 133-141. |
AI B , ZHANG J Y , HE R S ,et al. Fundamental theory and key technologies of 5G for service and application of intelligent high-speed railway[J]. Bulletin of National Natural Science Foundation of China, 2020,34(2): 133-141. | |
[33] | SOLIMAN M , SIEMONS J , KOCHEMS J ,et al. Automatic train coupling:challenges and key enablers[J]. IEEE Communications Magazine, 2019,57(9): 32-38. |
[34] | ZHAO J H , NI S J , YANG L H ,et al. Multiband cooperation for 5G HetNets:a promising network paradigm[J]. IEEE Vehicular Technology Magazine, 2019,14(4): 85-93. |
[35] | MORENO J , RIERA J M , HARO L D ,et al. A survey on future railway radio communications services:challenges and opportunities[J]. IEEE Communications Magazine, 2015,53(10): 62-68. |
[1] | Zehua GUO, Haowen ZHU, Tongwen XU. Network modal innovation for distributed machine learning [J]. Telecommunications Science, 2023, 39(6): 44-51. |
[2] | Ruihong JIANG, Yizhe FENG, Yaohua SUN, Haina ZHENG. A survey on networking key technologies for LEO satellite network [J]. Telecommunications Science, 2023, 39(2): 37-47. |
[3] | Bo GU, Ting AO. Application of MEC-based positioning technology in the Internet of vehicles [J]. Telecommunications Science, 2022, 38(Z1): 250-258. |
[4] | Aihua LI, Xiaobo WU, Chao CHEN, Bin WEI, Yuanyuan SHI. Big data intelligent analysis technology for 5G network [J]. Telecommunications Science, 2022, 38(8): 129-139. |
[5] | Pingke DENG, Tongxu ZHANG, Nanxiang SHI, Tong ZHANG, Tianzhu SHAO, Shaowen ZHENG. Computing satellite networks—the novel development of computing-empowered space-air-ground integrated networks [J]. Telecommunications Science, 2022, 38(6): 71-81. |
[6] | Lushan ZOU, Xiaowen HUANG, Jingmin YANG, Yifeng ZHENG, Guanglin ZHANG, Wenjie ZHANG. Review on resources allocation and pricing methods in mobile edge computing [J]. Telecommunications Science, 2022, 38(3): 113-132. |
[7] | Mingwei ZHU. AI engineering technology solutions in network intelligence [J]. Telecommunications Science, 2022, 38(2): 157-165. |
[8] | Ruiying CHENG, Pan ZHANG, Yu XIAO, Yujie QIAO, Anyi ZHANG. Time series data based AI operation and maintenance system of cloud network collaboration platform [J]. Telecommunications Science, 2022, 38(11): 24-35. |
[9] | Zhihong CHEN, Mingxiao WANG. Application of computer vision in intelligent security [J]. Telecommunications Science, 2021, 37(8): 142-147. |
[10] | Shuo YUAN, Yijing REN, Zeyu WANG, Yaohua SUN, Mugen PENG. Software defined intelligent satellite-terrestrial integrated wireless network [J]. Telecommunications Science, 2021, 37(6): 66-77. |
[11] | Jianwu ZHANG, Luxin WANG, Lingfen SUN, Qianye ZHANG, Hangguan SHAN. An survey on application of artificial intelligence in 5G system [J]. Telecommunications Science, 2021, 37(5): 14-31. |
[12] | Zhiyong LIU, Zhongjiang HE, Yilong RUAN, Junfeng SHAN, Chao ZHANG. Big data security features and operation practices [J]. Telecommunications Science, 2021, 37(5): 160-169. |
[13] | Yingzhao ZHU, Man LI. Review on meta-learning [J]. Telecommunications Science, 2021, 37(1): 22-31. |
[14] | Tong ZHANG,Yijing REN,Shi YAN,Mugen PENG. Artificial intelligence driven 6G networks:endogenous intelligence [J]. Telecommunications Science, 2020, 36(9): 14-22. |
[15] | Bin DONG. Systematic construction of operator’s intelligent customer service [J]. Telecommunications Science, 2020, 36(7): 118-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|