Telecommunications Science ›› 2021, Vol. 37 ›› Issue (5): 14-31.doi: 10.11959/j.issn.1000-0801.2021109
• Topic: Integration of Communication and AI • Previous Articles Next Articles
Jianwu ZHANG1, Luxin WANG1, Lingfen SUN2, Qianye ZHANG3,4, Hangguan SHAN4
Revised:
2020-05-15
Online:
2021-05-20
Published:
2021-05-01
Supported by:
CLC Number:
Jianwu ZHANG, Luxin WANG, Lingfen SUN, Qianye ZHANG, Hangguan SHAN. An survey on application of artificial intelligence in 5G system[J]. Telecommunications Science, 2021, 37(5): 14-31.
"
压缩率(CR) | CsiNet[ | CsiNet+[ | SM-CsiNet+[ | PM-CsiNet+[ | LSTM-CsiNet[ | |
室内 | 4 | -17.36 | -27.37 | -27.60 | — | |
8 | -12.70 | -18.29 | -17.70 | — | ||
16 | -8.64 | -14.14 | -13.45 | -12.25 | ||
32 | -6.24 | -10.43 | -9.89 | -8.24 | ||
64 | -5.84 | — | — | — | ||
室外 | 4 | -8.75 | -11.91 | -12.02 | — | |
8 | -7.61 | -8.25 | -8.10 | — | ||
16 | -4.51 | -5.73 | -5.31 | -5.07 | ||
32 | -2.81 | -3.4 | -3.22 | -3.00 | ||
64 | -1.93 | — | — | — |
"
压缩率 | CNR(dB) | CsiNet[ | AnciNet[ |
16 | 0 | -2.76 | -8.70 |
5 | -6.24 | -11.64 | |
10 | -8.71 | -13.31 | |
15 | -9.56 | -14.42 | |
20 | -10.03 | -14.84 | |
25 | -10.19 | -14.99 | |
32 | 0 | -1.94 | -7.47 |
5 | -4.94 | -9.26 | |
10 | -7.23 | -9.88 | |
15 | -7.83 | -10.42 | |
20 | -8.09 | -10.55 | |
25 | -8.17 | -10.60 | |
64 | 0 | -0.75 | -6.49 |
5 | -3.45 | -7.65 | |
10 | -4.80 | -7.92 | |
15 | -5.28 | -8.30 | |
20 | -5.45 | -8.37 | |
25 | -5.52 | -8.40 |
[1] | GHOSH A , MAEDER A , BAKER M ,et al. 5G evolution: a view on 5G cellular technology beyond 3GPP release 15[J]. IEEE Access, 2019(7): 127639-127651. |
[2] | ZHANG C , HUANG Y H , SHEIKH F ,et al. Advanced baseband processing algorithms,circuits,and implementations for 5G communication[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017,7(4): 477-490. |
[3] | MA Z , ZHANG Z Q , DING Z G ,et al. Key techniques for 5G wireless communications: network architecture,physical layer,and MAC layer perspectives[J]. Science China Information Sciences, 2015,58(4): 1-20. |
[4] | LIN C Z , LU J W , WANG G ,et al. Graininess-aware deep feature learning for robust pedestrian detection[J]. IEEE Transactions on Image Processing, 2020(29): 3820-3834. |
[5] | ZHU S , CAO R S , YU K . Dual learning for semi-supervised natural language understanding[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing, 2020(28): 1936-1947. |
[6] | SYNNAEVE G , BESSIèRE P . Multiscale Bayesian modeling for RTS games: an application to StarCraft AI[J]. IEEE Transactions on Computational Intelligence and AI in Games, 2016,8(4): 338-350. |
[7] | 刘留, 张建华, 樊圆圆 ,等. 机器学习在信道建模中的应用综述[J]. 通信学报, 2021,42(2): 134-153. |
LIU L , ZHANG J H , FAN Y Y ,et al. Survey of application of machine learning in wireless channel modeling[J]. Journal on Communications, 2021,42(2): 134-153. | |
[8] | 尤肖虎, 张川, 谈晓思 ,等. 基于AI的5G技术: 研究方向与范例[J]. 中国科学: 信息科学, 2018,48(12): 1589-1602. |
YOU X H , ZHANG C , TAN X S ,et al. AI for 5G: research directions and paradigms[J]. Scientia Sinica (Informationis), 2018,48(12): 1589-1602. | |
[9] | 张建敏, 杨峰义, 武洲云 . 多接入边缘计算(MEC)及关键技术[M]. 北京: 人民邮电出版社, 2019. |
ZHANG J M , YANG F Y , WU Z Y . Multi-access edge compu-ting (MEC) and key technologies[M]. Beijing: Posts & Telecom Press, 2019. | |
[10] | NING Z L , HU X P , CHEN Z K ,et al. A cooperative quality-aware service access system for social Internet of vehicles[J]. IEEE Internet of Things Journal, 2020,7(7): 6663. |
[11] | 谢人超, 廉晓飞, 贾庆民 ,等. 移动边缘计算卸载技术综述[J]. 通信学报, 2018,39(11): 138-155. |
XIE R C , LIAN X F , JIA Q M ,et al. Survey on computation of-floading in mobile edge computing[J]. Journal on Communica-tions, 2018,39(11): 138-155. | |
[12] | 陈山枝, 王胡成, 时岩 . 5G移动性管理技术[M]. 北京: 人民邮电出版社, 2019. |
CHEN S Z , WANG H C , SHI Y . Mobile management technol-ogy for 5G[M]. Beijing: Posts & Telecom Press, 2019. | |
[13] | 杨志强, 粟栗, 杨波 ,等. 5G 安全技术与标准[M]. 北京: 人民邮电出版社, 2020. |
YANG Z Q , SU L , YANG B ,et al. 5G security technologies and standards[M]. Beijing: Posts & Telecom Press, 2020. | |
[14] | CAO Z L , ZHOU P , LI R X ,et al. Multiagent deep reinforcement learning for joint multichannel access and task offloading of mobile-edge computing in industry 4.0[J]. IEEE Internet of Things Journal, 2020,7(7): 6201-6213. |
[15] | WU H M , ZHANG Z R , GUAN C ,et al. Collaborate edge and cloud computing with distributed deep learning for smart city Internet of Things[J]. IEEE Internet of Things Journal, 2020,7(9): 8099-8110. |
[16] | YANG B , CAO X L , LI X F ,et al. Mobile-edge- computing-based hierarchical machine learning tasks distribution for IIoT[J]. IEEE Internet of Things Journal, 2020,7(3): 2169-2180. |
[17] | YANG B , CAO X L , LI X F ,et al. Joint communication and computing optimization for hierarchical machine learning tasks distribution[C]// Proceedings of 2019 IEEE Symposium on Computers and Communications (ISCC). Piscataway: IEEE Press, 2019: 1-6. |
[18] | JIANG F B , WANG K Z , DONG L ,et al. Stacked autoencoder-based deep reinforcement learning for online resource scheduling in large-scale MEC networks[J]. IEEE Internet of Things Journal, 2020,7(10): 9278-9290. |
[19] | NATH S , LI Y Z , WU J X ,et al. Multi-user multi-channel computation offloading and resource allocation for mobile edge computing[C]// Proceedings of ICC 2020 - 2020 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2020: 1-6. |
[20] | HUANG L , BI S Z , ZHANG Y J A . Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks[J]. IEEE Transactions on Mobile Computing, 2020,19(11): 2581-2593. |
[21] | SONG X , CHAI R , CHEN Q B . Joint task offloading,CNN layer scheduling and resource allocation in cooperative computing system[C]// Proceedings of Communications and Networking.[S.l.:s.n.], 2020. |
[22] | LI J , GAO H , LV T ,et al. Deep reinforcement learning based computation offloading and resource allocation for MEC[C]// Proceedings of 2018 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2018: 1-6. |
[23] | 赵海涛, 张唐伟, 陈跃 ,等. 基于DQN的车载边缘网络任务分发卸载算法[J]. 通信学报, 2020,41(10): 172-178. |
ZHAO H T , ZHANG T W , CHEN Y ,et al. Task distribution offloading algorithm of vehicle edge network based on DQN[J]. Journal on Communications, 2020,41(10): 172-178. | |
[24] | MACH P , BECVAR Z . Cloud-aware power control for cloud-enabled small cells[C]// Proceedings of 2014 IEEE Globecom Workshops (GC Wkshps). Piscataway:IEEE Press, 2014: 1038-1043. |
[25] | WANG S Q , ZAFER M , LEUNG K K . Online placement of multi-component applications in edge computing environments[J]. IEEE Access, 2017(5): 2514-2533. |
[26] | ALI Z , KHAF S , ABBAS Z H ,et al. A deep learning approach for mobility-aware and energy-efficient resource allocation in MEC[J]. IEEE Access, 2020(8): 179530-179546. |
[27] | DIN N , CHEN H P , KHAN D . Mobility-aware resource allocation in multi-access edge computing using deep reinforcement learning[C]// Proceedings of 2019 IEEE Intl Conf on Parallel &Distributed Processing with Applications,Big Data & Cloud Computing,Sustainable Computing & Communications,Social Computing & Networking. Piscataway:IEEE Press, 2019: 202-209. |
[28] | ZHAN W H , LUO C B , WANG J ,et al. Deep-reinforcementlearning-based offloading scheduling for vehicular edge computing[J]. IEEE Internet of Things Journal, 2020,7(6): 5449-5465. |
[29] | SCHULMAN J , WOLSKI F , DHARIWAL P ,et al. Proximal policy optimization algorithms[EB]. 2017. |
[30] | WU C L , CHIU T C , WANG C Y ,et al. Mobility-aware deep reinforcement learning with glimpse mobility prediction in edge computing[C]// Proceedings of ICC 2020 - 2020 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2020: 1-7. |
[31] | WANG J F , LV T , HUANG P M ,et al. Mobility-aware partial computation offloading in vehicular networks: a deep reinforcement learning based scheme[J]. China Communications, 2020,17(10): 31-49. |
[32] | ABBAS N , ZHANG Y , TAHERKORDI A ,et al. Mobile edge computing: a survey[J]. IEEE Internet of Things Journal, 2018,5(1): 450-465. |
[33] | 杨建喜, 张媛利, 蒋华 ,等. 边缘计算中基于深度 Q 网络的物理层假冒攻击检测方法[J]. 计算机应用, 2020,40(11): 3229-3235. |
YANG J X , ZHANG Y L , JIANG H ,et al. Detection method of physical-layer impersonation attack based on deep Q-network in edge computing[J]. Journal of Computer Applications, 2020,40(11): 3229-3235. | |
[34] | 陈佳, 欧阳金源, 冯安琪 ,等. 边缘计算构架下基于孤立森林算法的 DoS 异常检测[J]. 计算机科学, 2020,47(2): 287-293. |
CHEN J , OUYANG J Y , FENG A Q ,et al. DoS anomaly detec-tion based on isolation forest algorithm under edge computing framework[J]. Computer Science, 2020,47(2): 287-293. | |
[35] | GOPALAKRISHNAN T , RUBY D , AL-TURJMAN F ,et al. Deep learning enabled data offloading with cyber attack detection model in mobile edge computing systems[J]. IEEE Access, 2020(8): 185938-185949. |
[36] | KAYODE O , TOSUN A S . Deep Q-network for enhanced data privacy and security of IoT traffic[C]// Proceedings of 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). Piscataway: IEEE Press, 2020: 1-6. |
[37] | XIONG J B , ZHAO M F , BHUIYAN M Z A ,et al. An AI-enabled three-party game framework for guaranteed data privacy in mobile edge crowdsensing of IoT[J]. IEEE Transactions on Industrial Informatics, 2021,17(2): 922-933. |
[38] | HE X F , JIN R C , DAI H Y . Deep PDS-learning for privacy-aware offloading in MEC-enabled IoT[J]. IEEE Internet of Things Journal, 2019,6(3): 4547-4555. |
[39] | DONG J Y , GENG D Q , HE X F . Privacy-aware task offloading via two-timescale reinforcement learning[C]// Proceedings of 2020 IEEE/CIC International Conference on Communications in China (ICCC). Piscataway: IEEE Press, 2020: 220-225. |
[40] | CHEN S G , YOU Z H , RUAN X K . Privacy and energy co-aware data aggregation computation offloading for fog-assisted IoT networks[J]. IEEE Access, 2020(8): 72424-72434. |
[41] | HUANG B B , LI Z J , TANG P ,et al. Security modeling and efficient computation offloading for service workflow in mobile edge computing[J]. Future Generation Computer Systems, 2019,97: 755-774. |
[42] | CHEN T , MATINMIKKO M , CHEN X F ,et al. Software defined mobile networks:concept,survey,and research directions[J]. IEEE Communications Magazine, 2015,53(11): 126-133. |
[43] | BUSARI S A , HUQ K M S , MUMTAZ S ,et al. Millimeter-wave massive MIMO communication for future wireless systems: a survey[J]. IEEE Communications Surveys & Tutorials, 2018,20(2): 836-869. |
[44] | LI Q C , NIU H N , PAPATHANASSIOU A T ,et al. 5G network capacity: key elements and technologies[J]. IEEE Vehicular Technology Magazine, 2014,9(1): 71-78. |
[45] | UWAECHIA A N , MAHYUDDIN N M . A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: feasibility and challenges[J]. IEEE Access, 2020(8): 62367-62414. |
[46] | AYACH O E , RAJAGOPAL S , ABU-SURRA S ,et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014,13(3): 1499-1513. |
[47] | YU X H , SHEN J C , ZHANG J ,et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016,10(3): 485-500. |
[48] | CHEN C E . An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems[J]. IEEE Wireless Communications Letters, 2015,4(3): 285-288. |
[49] | JIN J N , ZHENG Y R , CHEN W ,et al. Hybrid precoding for millimeter wave MIMO systems: a matrix factorization approach[J]. IEEE Transactions on Wireless Communications, 2018,17(5): 3327-3339. |
[50] | ALKHATEEB A , LEUS G , HEATH R W . Limited feedback hybrid precoding for multi-user millimeter wave systems[J]. IEEE Transactions on Wireless Communications, 2015,14(11): 6481-6494. |
[51] | NI W H , DONG X D . Hybrid block diagonalization for massive multiuser MIMO systems[J]. IEEE Transactions on Communications, 2016,64(1): 201-211. |
[52] | LIANG L , XU W , DONG X D . Low-complexity hybrid precoding in massive multiuser MIMO systems[J]. IEEE Wireless Communications Letters, 2014,3(6): 653-656. |
[53] | DAI L L , GAO X Y , QUAN J G ,et al. Near-optimal hybrid analog and digital precoding for downlink mmWave massive MIMO systems[C]// Proceedings of 2015 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2015: 1334-1339. |
[54] | GAO X Y , DAI L L , HAN S F ,et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays[J]. IEEE Journal on Selected Areas in Communications, 2016,34(4): 998-1009. |
[55] | YU X H , ZHANG J , LETAIEF K B . A hardware-efficient analog network structure for hybrid precoding in millimeter wave systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2018,12(2): 282-297. |
[56] | PARK S , ALKHATEEB A , HEATH R W . Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2017,16(5): 2907-2920. |
[57] | JING X R , LI L H , LIU H Q ,et al. Dynamically connected hybrid precoding scheme for millimeter-wave massive MIMO systems[J]. IEEE Communications Letters, 2018,22(12): 2583-2586. |
[58] | PAYAMI S , GHORAISHI M , DIANATI M . Hybrid beamforming for large antenna arrays with phase shifter selection[J]. IEEE Transactions on Wireless Communications, 2016,15(11): 7258-7271. |
[59] | SIDHARTH C , HIREMATH S M , PATRA S K . Deep Learning based Hybrid Precoding for mmWave Massive MIMO system using ComcepNet[C]// Proceedings of 2020 International Conference on Communication and Signal Processing (ICCSP). Piscataway: IEEE Press, 2020: 1317-1321. |
[60] | HUANG H J , SONG Y W , YANG J ,et al. Deep-learning-based millimeter-wave massive MIMO for hybrid precoding[J]. IEEE Transactions on Vehicular Technology, 2019,68(3): 3027-3032. |
[61] | CHAI M Y , TANG S H , ZHAO M ,et al. HPNet: a compressed neural network for robust hybrid precoding in multi-user massive MIMO systems[C]// Proceedings of GLOBECOM 2020 2020 IEEE Global Communications Conference. Piscataway:IEEE Press, 2020: 1-7. |
[62] | MA W Y , QI C H , ZHANG Z C ,et al. Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO[J]. IEEE Transactions on Communications, 2020,68(5): 2838-2849. |
[63] | MIR T , ZAIN SIDDIQI M , MIR U ,et al. Machine learning inspired hybrid precoding for wideband millimeter-wave massive MIMO systems[J]. IEEE Access, 2019(7): 62852-62864. |
[64] | JIANG J , YANG Y . Deep learning assisted hybrid precoding with dynamic subarrays in mmWave MU-MIMO system[C]// Proceedings of 2020 IEEE/CIC International Conference on Communications in China (ICCC). Piscataway: IEEE Press, 2020: 256-261. |
[65] | BAO X L , FENG W J , ZHENG J L ,et al. Deep CNN and equivalent channel based hybrid precoding for mmWave massive MIMO systems[J]. IEEE Access, 2020(8): 19327-19335. |
[66] | 甘天江, 傅友华, 王海荣 . 毫米波大规模 MIMO 系统中基于机器学习的自适应连接混合预编码[J]. 信号处理, 2020,36(5): 677-685. |
GAN T J , FU Y H , WANG H R . Machine learning-based adap-tive connection hybrid precoding for mmWave massive MIMO systems[J]. Journal of Signal Processing, 2020,36(5): 677-685. | |
[67] | LI J L , ZHANG Q , XIN X J ,et al. Deep learning-based massive MIMO CSI feedback[C]// Proceedings of 2019 18th International Conference on Optical Communications and Networks (ICOCN). Piscataway: IEEE Press, 2019: 1-3. |
[68] | GUO J J , WEN C K , JIN S ,et al. Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback:design,simulation,and analysis[J]. IEEE Transactions on Wireless Communications, 2020,19(4): 2827-2840. |
[69] | WANG T Q , WEN C K , JIN S ,et al. Deep learning-based CSI feedback approach for time-varying massive MIMO channels[J]. IEEE Wireless Communications Letters, 2019,8(2): 416-419. |
[70] | LI Q , ZHANG A H , LIU P C ,et al. A novel CSI feedback approach for massive MIMO using LSTM-attention CNN[J]. IEEE Access, 2020(8): 7295-7302. |
[71] | KARIM F , MAJUMDAR S , DARABI H ,et al. LSTM fully convolutional networks for time series classification[J]. IEEE Access, 2018(6): 1662-1669. |
[72] | LIU Z Y , ZHANG L , DING Z . An efficient deep learning framework for low rate massive MIMO CSI reporting[J]. IEEE Transactions on Communications, 2020,68(8): 4761-4772. |
[73] | LIU Z Y , ZHANG L , DING Z . Exploiting Bi-directional channel reciprocity in deep learning for low rate massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2019,8(3): 889-892. |
[74] | CHEN T , GUO J J , JIN S ,et al. A novel quantization method for deep learning-based massive MIMO CSI feedback[C]// Proceedings of 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Piscataway: IEEE Press, 2019: 1-5. |
[75] | SUN Y Y , XU W , FAN L S ,et al. AnciNet: an efficient deep learning approach for feedback compression of estimated CSI in massive MIMO systems[J]. IEEE Wireless Communications Letters, 2020,9(12): 2192-2196. |
[76] | SAMUEL S , KRISTOPHER H , JUN G ,et al. Marefat,Tamal Bose:machine learning based MIMO equalizer for high frequency (HF) communications[Z]. 2020. |
[77] | CARRERA D F , VARGAS-ROSALES C , YUNGAICELA-NAULA N M ,et al. Comparative study of artificial neural network based channel equalization methods for mmWave communications[J]. IEEE Access, 2021(9): 41678-41687. |
[78] | ZHANG Y , DOSHI A , LISTON R ,et al. DeepWiPHY: deep learning-based receiver design and dataset for IEEE 802.11ax systems[J]. IEEE Transactions on Wireless Communications, 2021,20(3): 1596-1611. |
[79] | YE H , LI G Y . Initial results on deep learning for joint channel equalization and decoding[C]// Proceedings of 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). Piscataway:IEEE Press, 2017: 1-5. |
[80] | NWANKWO C D , ZHANG L , QUDDUS A ,et al. A survey of self-interference management techniques for single frequency full duplex systems[J]. IEEE Access, 2018(6): 30242-30268. |
[81] | GUO H Q , WU S E , WANG H G ,et al. DSIC: deep learning based self-interference cancellation for in-band full duplex wireless[C]// Proceedings of 2019 IEEE Global Communications Conference (GLOBECOM). Piscataway: IEEE Press, 2019: 1-6. |
[82] | CHEN Y T , MISHRA R K , SCHWARTZ D ,et al. MIMO full duplex radios with deep learning[C]// Proceedings of 2020 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway: IEEE Press, 2020: 1-6. |
[83] | GUO H Q , XU J H , ZHU S Y ,et al. Realtime software defined self-interference cancellation based on machine learning for in-band full duplex wireless communications[C]// Proceedings of 2018 International Conference on Computing,Networking and Communications (ICNC). Piscataway:IEEE Press, 2018: 779-783. |
[84] | IOANNOU I , VASSILIOU V , CHRISTOPHOROU C ,et al. Distributed artificial intelligence solution for D2D communication in 5G networks[J]. IEEE Systems Journal, 2020,14(3): 4232-4241. |
[85] | XU J , GU X Y , FAN Z Q . D2D power control based on hierarchical extreme learning machine[C]// Proceedings of 2018 IEEE 29th Annual International Symposium on Personal,Indoor and Mobile Radio Communications (PIMRC). Piscataway: IEEE Press, 2018: 1-7. |
[86] | HAMDI M , YUAN D , ZAIED M . GA-based scheme for fair joint channel allocation and power control for underlaying D2D multicast communications[C]// Proceedings of 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). Piscataway: IEEE Press, 2017: 446-451. |
[87] | LIU Y , YUAN X L , XIONG Z H ,et al. Federated learning for 6G communications: Challenges,methods,and future directions[J]. China Communications, 2020,17(9): 105-118. |
[88] | DANG S P , AMIN O , SHIHADA B ,et al. What should 6G be?[J]. Nature Electronics, 2020,3(1): 20-29. |
[1] | Zehua GUO, Haowen ZHU, Tongwen XU. Network modal innovation for distributed machine learning [J]. Telecommunications Science, 2023, 39(6): 44-51. |
[2] | Yan WANG, Ying PENG. Research on 6G standardization of International Telecommunications Union(ITU) [J]. Telecommunications Science, 2023, 39(6): 129-138. |
[3] | Chen ZHANG, Hongkai WANG, Dong MAO, Sichen PAN, Shuai ZHAO. Research and application of 5G lightweight hardware encryption module for power terminals [J]. Telecommunications Science, 2023, 39(6): 159-169. |
[4] | Hao XU, Lin WU. Research on VoWi-Fi interoperability based on 5G network [J]. Telecommunications Science, 2023, 39(5): 144-154. |
[5] | Xuerong WANG, Zhengzhi TANG, Yinchuan LI, Meiyu QI, Jianbo ZHU, Liang ZHANG. Delay-sensitive traffic intellisense scheduling based on optimal decision tree [J]. Telecommunications Science, 2023, 39(4): 120-132. |
[6] | Jianbin WANG, Shuchun WANG, Shangjin LIAO, Shuyuan SHI. Research on 5G base station energy saving system based on DCNN-LSTM load prediction algorithm [J]. Telecommunications Science, 2023, 39(4): 133-141. |
[7] | Le ZHANG, Hongyuan MA. Practice on edge cloud security of telecom operators [J]. Telecommunications Science, 2023, 39(4): 165-172. |
[8] | Siyang LIU, Yunfei ZHANG. From ICV 1.0 to ICV 2.0: real-time digital twin city construction for the coordinated development of ICV and smart city [J]. Telecommunications Science, 2023, 39(3): 32-44. |
[9] | Xiwen LIAO, Supeng LENG, Yujun MING, Tianyang LI. Digital twin based intelligent urban traffic forecasting and guidance strategy [J]. Telecommunications Science, 2023, 39(3): 70-79. |
[10] | Guanghai LIU, Tian XIAO, Bei LI, Xinzhou CHENG, Yongbei XUE, Yi LI, Xiaomeng ZHU, Yuting ZHENG. Research on 5G service coverage capability before 4G carrier re-farming to 5G [J]. Telecommunications Science, 2023, 39(3): 115-123. |
[11] | Ruihong JIANG, Yizhe FENG, Yaohua SUN, Haina ZHENG. A survey on networking key technologies for LEO satellite network [J]. Telecommunications Science, 2023, 39(2): 37-47. |
[12] | Shuling WANG, Jie SUN, Peng WANG, Aidong YANG. Resource scheduling optimization in cloud-edge collaboration [J]. Telecommunications Science, 2023, 39(2): 163-170. |
[13] | Yu KANG, Yaqiong LIU, Tongyu ZHAO, Guochu SHOU. A survey on AI algorithms applied in communication and computation in Internet of vehicles [J]. Telecommunications Science, 2023, 39(1): 1-19. |
[14] | Chuanbing GONG, Mingshuai YANG, Song WU, Haiping GE, Shouguo ZHANG, Lei LIU, Yunshan QI, Hui XU. Research on the application of site value evaluation model [J]. Telecommunications Science, 2023, 39(1): 100-107. |
[15] | Mengzhe ZHANG, Yijun XIA. Status quo, problem and promotion suggestions of 5G application in industrial field [J]. Telecommunications Science, 2023, 39(1): 126-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|