[1] |
ETSI. Multi-access edge computing (MEC)[EB]. 2022.
|
[2] |
HU P F , DHELIM S , NING H S ,et al. Survey on fog computing:architecture,key technologies,applications and open issues[J]. Journal of Network and Computer Applications, 2017(98): 27-42.
|
[3] |
MARTIN A . Distributed computing:utilities,grids & clouds ITU-T technology watch report 2009[R]. 2009.
|
[4] |
ITU-T.Y. 2501:computing power network-framework and architecture[S]. 2019.
|
[5] |
王凌, 吴楚格, 范文慧 . 边缘计算资源分配与任务调度优化综述[J]. 系统仿真学报, 2021,33(3): 509-520.
|
|
WANG L , WU C G , FAN W H . A survey of edge computing resource allocation and task scheduling optimization[J]. Journal of System Simulation, 2021,33(3): 509-520.
|
[6] |
JAMIL B , IJAZ H , SHOJAFAR M ,et al. Resource allocation and task scheduling in fog computing and Internet of everything environments:a taxonomy,review,and future directions[J]. ACM Computing Surveys, 2022,54(11s): 1-38.
|
[7] |
IBRAHIM E , EL-BAHNASAWY N A , OMARA F A . Task scheduling algorithm in cloud computing environment based on cloud pricing models[C]// Proceedings of 2016 World Symposium on Computer Applications & Research (WSCAR). Piscataway:IEEE Press, 2016: 65-71.
|
[8] |
ABDULLAHI C , GOUR K , JOARDER K . The co-evolution of cloud and IoT applications:recent and future trends[R]. 2019.
|
[9] |
BENBLIDIA M A , BRIK B , MERGHEM-BOULAHIA L ,et al. Ranking fog nodes for tasks scheduling in fog-cloud environments:a fuzzy logic approach[C]// Proceedings of 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC). Piscataway:IEEE Press, 2019: 1451-1457.
|
[10] |
ABDELMONEEM R M , BENSLIMANE A , SHAABAN E . Mobility-aware task scheduling in cloud-Fog IoT-based healthcare architectures[J]. Computer Networks, 2020(179): 107348.
|
[11] |
NI L N , ZHANG J Q , JIANG C J ,et al. Resource allocation strategy in fog computing based on priced timed petri nets[J]. IEEE Internet of Things Journal, 2017,4(5): 1216-1228.
|
[12] |
ZHAO X Y , ZONG Q , TIAN B L ,et al. Fast task allocation for heterogeneous unmanned aerial vehicles through reinforcement learning[J]. Aerospace Science and Technology, 2019(92): 588-594.
|
[13] |
Gartner. Gartner trends 2021:what they mean for retailers[R]. 2020.
|
[14] |
Cloud Networking. The 2020 gartner magic quadrant for data center and cloud networking[R]. 2019.
|
[15] |
中国电信. 云网融合2030技术白皮书[R]. 2020.
|
|
China Telecom. Computing and network convergence technical white paper[R]. 2020.
|
[16] |
RAUSCH T , RASHED A , DUSTDAR S . Optimized container scheduling for data-intensive server less edge computing[J]. Future Generation Computer Systems, 2021 (114): 259-271.
|
[17] |
XU J L , PALANISAMY B , LUDWIG H ,et al. Zenith:utility-aware resource allocation for edge computing[C]// Proceedings of 2017 IEEE International Conference on Edge Computing (EDGE). Piscataway:IEEE Press, 2017: 47-54.
|
[18] |
CHEN J S , BALASUBRAMANIAN B , HUANG Z . Liv(e)-ing on the edge:user-uploaded live streams driven by “first-Mile”edge decisions[C]// Proceedings of 2019 IEEE International Conference on Edge Computing (EDGE). Piscataway:IEEE Press, 2019: 41-50.
|
[19] |
FARHADI V , MEHMETI F , HE T ,et al. Service placement and request scheduling for data-intensive applications in edge clouds[J]. IEEE/ACM Transactions on Networking, 2021,29(2): 779-792.
|
[20] |
ADDYA S K , SATPATHY A , GHOSH B C ,et al. CoMCLOUD:virtual machine coalition for multi-tier applications over multi-cloud environments[J]. IEEE Transactions on Cloud Computing, 2021(99): 1.
|