通信学报 ›› 2020, Vol. 41 ›› Issue (6): 175-183.doi: 10.11959/j.issn.1000-436x.2020100

• 学术通信 • 上一篇    下一篇

基于社会注意力机制的行人轨迹预测方法研究

李琳辉1,2,周彬1,连静1,2(),周雅夫1   

  1. 1 大连理工大学汽车工程学院,辽宁 大连 116024
    2 大连理工大学工业装备结构分析国家重点实验室,辽宁 大连 116024
  • 修回日期:2020-03-13 出版日期:2020-06-25 发布日期:2020-07-04
  • 作者简介:李琳辉(1981- ),男,河南辉县人,博士,大连理工大学副教授,主要研究方向为智能车辆环境感知、规划决策与导航控制等|周彬(1997- ),男,山东临沂人,大连理工大学硕士生,主要研究方向为智能车辆规划决策、轨迹预测等|连静(1980- ),女,吉林公主岭人,博士,大连理工大学副教授,主要研究方向为新能源汽车智能化、轨迹预测等|周雅夫(1962- ),男,辽宁大连人,大连理工大学教授,主要研究方向为新能源汽车动力控制、新能源汽车网联化等
  • 基金资助:
    国家自然科学基金资助项目(61976039);国家自然科学基金资助项目(51775082);中央高校基本科研业务费专项基金资助项目(DUT19LAB36);中央高校基本科研业务费专项基金资助项目(DUT17LAB11)

Research on pedestrian trajectory prediction method based on social attention mechanism

Linhui LI1,2,Bin ZHOU1,Jing LIAN1,2(),Yafu ZHOU1   

  1. 1 School of Automotive Engineering,Dalian University of Technology,Dalian 116024,China
    2 State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,China
  • Revised:2020-03-13 Online:2020-06-25 Published:2020-07-04
  • Supported by:
    The National Natural Science Foundation of China(61976039);The National Natural Science Foundation of China(51775082);The Fundamental Research Funds for the Central Universities(DUT19LAB36);The Fundamental Research Funds for the Central Universities(DUT17LAB11)

摘要:

为提高行人交互中轨迹预测速度、精度与模型可解释性,提出了一种基于社会注意力机制的GAN模型。首先,定义了一种新型社会关系,对行人间的影响进行社会关系建模,设计了基于注意力机制的网络模型,提高了网络预测速度和可解释性。然后,探索不同池化汇集机制对预测结果的影响,确定性能优异的池化模型。最后,搭建了轨迹预测网络,并在UCY和ETH数据集中进行训练。实验结果表明,所提模型预测精度优于现有方法,且实时性较现有方法提升18.3% 。

关键词: 行人轨迹预测, 生成对抗网络, 注意力机制, 社会力模型, 最优池化模型

Abstract:

In order to improve the speed,accuracy and model interpretability of trajectory prediction in pedestrian interaction,a GAN model based on social attention mechanism was proposed.Firstly,a new type of social relationship on pedestrians was defined to model social relationships and a network model based on the attention mechanism was designed to improve the speed and interpretability of network prediction.Secondly,the influence of different pooling mechanisms on the prediction results was explored to determine the pooling model with excellent performance.Finally,a trajectory prediction network was built on this basis and trained on the UCY and ETH data sets.The experimental results show that the model not only has better prediction accuracy than the existing methods,but also improves the real-time performance by 18.3% compared with the existing methods.

Key words: pedestrian trajectory prediction, generative adversarial network, attention mechanism, social force model, optimal pooling model

中图分类号: 

No Suggested Reading articles found!