物联网学报 ›› 2023, Vol. 7 ›› Issue (4): 13-27.doi: 10.11959/j.issn.2096-3750.2023.00352
• 理论与技术 • 上一篇
吕翔宇, 肖泳, 钟祎, 李强, 葛晓虎
修回日期:
2023-07-02
出版日期:
2023-12-01
发布日期:
2023-12-01
作者简介:
吕翔宇(1996- ),男,华中科技大学电子信息与通信学院硕士生,主要研究方向为无线通信、边缘卸载、最优运输理论基金资助:
Xiangyu LYU, Yong XIAO, Yi ZHONG, Qiang LI, Xiaohu GE
Revised:
2023-07-02
Online:
2023-12-01
Published:
2023-12-01
Supported by:
摘要:
随着物联网的发展,蜂窝网络中接入了大量的用户设备。由于用户设备空间分布和应用需求的变化,需要对用户设备卸载决策进行动态调整。综合考虑网络中用户设备空间分布、应用需求、基站侧边缘服务器的处理能力等参数信息,从分布角度出发,优化用户设备的卸载决策。基于最优运输理论,提出一种时延优化算法。通过合理规划网络中用户设备的卸载基站,降低用户设备计算任务卸载过程的平均时延。仿真结果表明,所提基于时延优化的卸载机制能使平均时延降低81.06%,并能均衡各基站之间处理的业务量。
中图分类号:
吕翔宇, 肖泳, 钟祎, 李强, 葛晓虎. 基于最优运输理论的蜂窝网边缘卸载时延优化研究[J]. 物联网学报, 2023, 7(4): 13-27.
Xiangyu LYU, Yong XIAO, Yi ZHONG, Qiang LI, Xiaohu GE. Research on edge offloading delay optimization of cellular networks based on optimal transport theory[J]. Chinese Journal on Internet of Things, 2023, 7(4): 13-27.
表1
仿真参数"
参数 | 说明 | 数值 |
矩形区域边长 | 1 000 m | |
二维截断高斯分布的均值 | 330 m、350 m | |
二维截断高斯分布的标准差 | 300、300 | |
γ | 数据包中数据量的均值 | 10 kbit |
基站位置坐标 | (200,200)(200,800) | |
(400,400)(800,200) | ||
(800,800) | ||
f | 基站侧MEC服务器的频率 | 30 GHz |
ω | 处理单比特数据所需CPU周期数 | 400 cycle/bit |
U | 用户设备数量 | 8 000 |
N0 | 噪声功率密度 | 10-11W |
ϑ | 瑞利分布标准差 | 0.5 |
N | 天线根数 | 4 |
δ | 回传结果数据量与上传任务数据量之间的比例 | 0.2 |
用户设备单位时间内产生数据包个数的最大值 | 4 | |
α | 路径损耗指数 | 4 |
基站发射功率 | 1W | |
P u | 用户设备发射功率 | 0.3 W |
B | 上、下行信道传输带宽 | 10 MHz |
[1] | MAO Y Y , ZHANG J , LETAIEF K B . Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016,34(12): 3590-3605. |
[2] | ARCHANA R , VAISHNAVI C , PRIYANKA D S ,et al. Remote health monitoring using IoT and edge computing[C]// Proceedings of 2022 International Conference on IoT and Blockchain Technology (ICIBT). Piscataway:IEEE Press, 2022: 1-6. |
[3] | ZHENG J B , YANG T Y , LIU H W ,et al. Accurate detection and localization of unmanned aerial vehicle swarms-enabled mobile edge computing system[J]. IEEE Transactions on Industrial Informatics, 2021,17(7): 5059-5067. |
[4] | WANG K . Migration strategy of cloud collaborative computing for delay-sensitive industrial IoT applications in the context of intelligent manufacturing[J]. Computer Communications, 2020(150): 413-420. |
[5] | LIN B , ZHU F N , ZHANG J S ,et al. A time-driven data placement strategy for a scientific workflow combining edge computing and cloud computing[J]. IEEE Transactions on Industrial Informatics, 2019,15(7): 4254-4265. |
[6] | REN J K , YU G D , CAI Y L ,et al. Latency optimization for resource allocation in mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2018,17(8): 5506-5519. |
[7] | TAO O Y , ZHI Z , XU C . Follow me at the edge:mobility-aware dynamic service placement for mobile edge computing[J]. IEEE Journal on Selected Areas in Communications, 2018,36(10): 2333-2345. |
[8] | ZHOU Y , YEOH P L , PAN C H ,et al. Offloading optimization for low-latency secure mobile edge computing systems[J]. IEEE Wireless Communications Letters, 2020,9(4): 480-484. |
[9] | MAO Y Y , ZHANG J , SONG S H ,et al. Power-delay tradeoff in multi-user mobile-edge computing systems[C]// Proceedings of 2016 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2017: 1-6. |
[10] | LIU J , MAO Y Y , ZHANG J ,et al. Delay-optimal computation task scheduling for mobile-edge computing systems[C]// Proceedings of 2016 IEEE International Symposium on Information Theory (ISIT). Piscataway:IEEE Press, 2016: 1451-1455. |
[11] | RIMAL B P , VAN D P , MAIER M . Cloudlet enhanced fiber-wireless access networks for mobile-edge computing[J]. IEEE Transactions on Wireless Communications, 2017,16(6): 3601-3618. |
[12] | LIU M T , YU F R , TENG Y L ,et al. Distributed resource allocation in blockchain-based video streaming systems with mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2019,18(1): 695-708. |
[13] | CHEN L X , ZHOU S , XU J . Computation peer offloading for energy-constrained mobile edge computing in small-cell networks[J]. IEEE/ACM Transactions on Networking, 2018,26(4): 1619-1632. |
[14] | 沈银芳 . 多元 Monge-Kantorovich 运输问题研究[D]. 上海:华东师范大学, 2009. |
SHEN Y F . Study on multi-monge-kantorovich transportation problem[D]. Shanghai:East China Normal University, 2009. | |
[15] | MASHKIN A L , TELUSHKINA E K , ULITSKAYA N M ,et al. Digital technologies of public administration in transport[C]// Proceedings of 2021 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED). Piscataway:IEEE Press, 2021: 1-6. |
[16] | LI S Q , LANG M X , LI S Y ,et al. Optimization of high-speed railway line planning with passenger and freight transport coordination[J]. IEEE Access, 2022(10): 110217-110247. |
[17] | OH G , SIM B , CHUNG H ,et al. Unpaired deep learning for accelerated MRI using optimal transport driven CycleGAN[J]. IEEE Transactions on Computational Imaging, 2020(6): 1285-1296. |
[18] | AKBARI A , AWAIS M , FATEMIFAR S ,et al. Deep order-preserving learning with adaptive optimal transport distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022,45(1): 313-328. |
[19] | WANG D , TIAN J , ZHANG H X ,et al. Task offloading and trajectory scheduling for UAV-enabled MEC networks:an optimal transport theory perspective[J]. IEEE Wireless Communications Letters, 2022,11(1): 150-154. |
[20] | MOZAFFARI M , SAAD W , BENNIS M ,et al. Wireless communication using unmanned aerial vehicles (UAVs):optimal transport theory for hover time optimization[J]. IEEE Transactions on Wireless Communications, 2017,16(12): 8052-8066. |
[21] | SILVA A , TEMBINE H , ALTMAN E ,et al. Optimum and equilibrium in assignment problems with congestion:mobile terminals association to base stations[J]. IEEE Transactions on Automatic Control, 2013,58(8): 2018-2031. |
[22] | WANG Y , HU Z Q , WEN X M ,et al. Three-dimensional aerial cell partitioning based on optimal transport theory[C]// 2020 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway:IEEE Press, 2020: 1-6. |
[23] | WANG L Y , ZHANG H X , GUO S S ,et al. Deployment and association of multiple UAVs in UAV-assisted cellular networks with the knowledge of statistical user position[J]. IEEE Transactions on Wireless Communications, 2022,21(8): 6553-6567. |
[24] | AREDO S C , NEGASH Y , MARYE Y W ,et al. Hardware efficient massive MIMO systems with optimal antenna selection[J]. Sensors, 2022,22(5): 1743. |
[25] | SHAN X Y , ZHI H X , LI P ,et al. A survey on computation offloading for mobile edge computing information[C]// Proceedings of 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity),IEEE International Conference on High Performance and Smart Computing,(HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). Piscataway:IEEE Press, 2018: 248-251. |
[26] | MAO Y Y , YOU C S , ZHANG J ,et al. A survey on mobile edge computing:the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017,19(4): 2322-2358. |
[27] | NGUYEN T T , LE L B , LE-TRUNG Q . Computation offloading in MIMO based mobile edge computing systems under perfect and imperfect CSI estimation[J]. IEEE Transactions on Services Computing, 2021,14(6): 2011-2025. |
[28] | GóMEZ-DéNIZ E , GóMEZ-DéNIZ L . A generalisation of the Rayleigh distribution with applications in wireless fading channels[J]. Wireless Communications and Mobile Computing, 2013,13(1): 85-94. |
[29] | 崔高峰, 徐媛媛, 张尚宏 ,等. 基于最小能耗的多无人机无线网络安全数据卸载策略[J]. 通信学报, 2021,42(5): 51-62. |
CUI G F , XU Y Y , ZHANG S H ,et al. Secure data offloading strategy for multi-UAV wireless networks based on minimum ene-rgy consumption[J]. Journal on Communications, 2021,42(5): 51-62. | |
[30] | COOPER R B . Introduction to queueing theory[M]. London: Edward Arnold, 1981. |
[31] | MONGE G . Mémoire sur la théorie des déblais et des remblais[J]. Mem.Math.Phys.Acad.Royale Sci., 1781: 666-704. |
[32] | 沈雪姣 . 建立在偏微分方程/概率理论基础上Monge-Kantorovich问题的快速算法[D]. 上海:华东师范大学, 2012. |
SHEN X J . A fast algorithm for Monge-Kantorovich problem based on partial differential equation/probability theory[D]. Shanghai:East China Normal University, 2012. | |
[33] | VILLANI C . Topics in optimal transportation[M]. Providence: American Mathematical Society, 2003. |
[34] | AMBROSIO L , GIGLI N . A user’s guide to optimal transport[M]// Heidelberg: Springer, 2013: 1-155. |
[35] | CRIPPA G , JIMENEZ C , PRATELLI A . Optimum and equilibrium in a transport problem with queue penalization effect[J]. Advances in Calculus of Variations, 2009,2(3): 207-246. |
[36] | 殷凤, 王鹏飞 . 二重积分中值定理的推广[J]. 忻州师范学院学报, 2011,27(2): 15-16,30. |
YIN F , WANG P F . The extension of double integral mean value theorem[J]. Journal of Xinzhou Teachers University, 2011,27(2): 15-16,30. |
[1] | 李源, 张雨露, 丁郁, 马帅, 肖善鹏, 肖建明, 李建. 无源物联网通信研究进展与演进思考[J]. 物联网学报, 2023, 7(3): 15-23. |
[2] | 杨义冰, 许荣涛, 陈霞, 王公仆, 艾渤. 无源物联网的编码技术研究[J]. 物联网学报, 2023, 7(3): 24-31. |
[3] | 吴靖, 李晟, 张景, 辛明, 陶若文, 周舟, 潘力佳, 施毅. 面向物联网的新型柔性传感器[J]. 物联网学报, 2023, 7(2): 1-14. |
[4] | 梁峻阁, 宋怡然, 孙杨帆, 计樱莹, 潘力佳, 施毅. 基于可穿戴与可植入技术的人体健康物联网研究进展[J]. 物联网学报, 2023, 7(2): 26-34. |
[5] | 耿光磊, 高博, 熊轲, 樊平毅, 陆杨, 王煜炜. 联邦学习赋能6G网络综述[J]. 物联网学报, 2023, 7(2): 50-66. |
[6] | 卫浓钰, 江子龙, 陈芳炯. 基于位置信息和能量均衡的声电协同网络AODV[J]. 物联网学报, 2023, 7(1): 27-36. |
[7] | 申滨, 李银波, 梁枭伟. 基于增强加权质心定位的认知物联网用户频谱接入控制[J]. 物联网学报, 2023, 7(1): 93-108. |
[8] | 汪静, 何乐生, 李忠红, 李路迟, 杨航. 物联网轻量级认证加密算法ASCON的软硬件协同设计[J]. 物联网学报, 2022, 6(4): 139-148. |
[9] | 蒋伟进, 罗田甜, 杨莹, 李恩, 周文颖. 物联网环境下基于区块链技术的私有数据访问控制模型[J]. 物联网学报, 2022, 6(4): 169-182. |
[10] | 邢方圆, 贺诗波, 孙铭阳, 陈积明. 基于“云-管-边-端”物联网架构的碳排放监测[J]. 物联网学报, 2022, 6(4): 53-64. |
[11] | 孙君, 赵尚维康. 工业物联网中基于Sarsa算法的节能计算卸载方案[J]. 物联网学报, 2022, 6(3): 82-90. |
[12] | 张在琛, 尤肖虎, 党建, 吴亮, 朱秉诚, 陈绩, 汪磊. 无线光通信与物联网[J]. 物联网学报, 2022, 6(3): 1-13. |
[13] | 黄诺, 刘伟杰, 龚晨. 面向工业物联网的拍赫兹通信[J]. 物联网学报, 2022, 6(3): 37-46. |
[14] | 刘杨, 李崔灿, 彭木根. 低功耗水下物联网:愿景与关键技术[J]. 物联网学报, 2022, 6(2): 1-9. |
[15] | 杨靖, 谢金凤, 陈怡. 我国智慧城市场景中物联网终端评测与认证体系研究[J]. 物联网学报, 2022, 6(2): 26-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|