Chinese Journal of Intelligent Science and Technology ›› 2021, Vol. 3 ›› Issue (1): 18-35.doi: 10.11959/j.issn.2096-6652.202103
• Surveys and Prospectives • Previous Articles Next Articles
Yi HU1, Boyang QU2, Jing LIANG1, Jie WANG1, Yanli WANG1
Revised:
2020-08-25
Online:
2021-03-15
Published:
2021-03-01
Supported by:
CLC Number:
Yi HU, Boyang QU, Jing LIANG, et al. A survey on evolutionary ensemble learning algorithm[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 18-35.
[1] | MAHMOOD A , LI T , YANG Y ,et al. Semi-supervised evolutionary ensembles for web video categorization[J]. Knowledge-Based Systems, 2015,76: 53-66. |
[2] | NAG K , PAL N R . A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification[J]. IEEE Transactions on Cybernetics, 2015,46(2): 499-510. |
[3] | DITTERRICH T . Machine learning research:four current direction[J]. Artificial Intelligence Magazine, 1997,4: 97-136. |
[4] | FERNANDEZ A , CARMONA C J , JOSE DEL JESUS M ,et al. A pareto-based ensemble with feature and instance selection for learning from multi-class imbalanced datasets[J]. International Journal of Neural Systems, 2017,27(6): 1750028. |
[5] | ROSALES-PEREZ A , GARCIA S , GONZALEZ J A ,et al. An evolutionary multiobjective model and instance selection for support vector machines with pareto-based ensembles[J]. IEEE Transactions on Evolutionary Computation, 2017,21(6): 863-877. |
[6] | 姚旭, 王晓丹, 张玉玺 ,等. 基于随机子空间和 AdaBoost 的自适应集成方法[J]. 电子学报, 2013,41(4): 810-814. |
YAO X , WANG X D , ZHANG Y X ,et al. A self-adaption ensemble algorithm based on random subspace and AdaBoost[J]. Acta Electronica Sinica, 2013,41(4): 810-814. | |
[7] | LIU Y , DIAO X C , CAO J J ,et al. A method for entity resolution in high dimensional data using ensemble classifiers[J]. Mathematical Problems in Engineering, 2017(12): 1-11. |
[8] | 李毓, 张春霞, 王冠伟 . 线性回归模型的 Boosting 变量选择方法[J]. 工程数学学报, 2015,32(5): 677-689. |
LI Y , ZHANG C X , WANG G W . Boosting variable selection algorithm for linear regression models[J]. Chinese Journal of Engineering Mathematics, 2015,32(5): 677-689. | |
[9] | JIMéNEZ F , SANCHEZ G , GARCIA J M ,et al. Multi-objective evolutionary feature selection for online sales forecasting[J]. Neurocomputing, 2017,234: 75-92. |
[10] | HONG Y , KWONG S , CHANG Y ,et al. Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm[J]. Pattern Recognition, 2008,41(9): 2742-2756. |
[11] | CHANDRA A , YAO X . Ensemble learning using multi-objective evolutionary algorithms[J]. Journal of Mathematical Modelling and Algorithms, 2006,5(4): 417-445. |
[12] | CHEN H , YAO X . Multiobjective neural network ensembles based on regularized negative correlation learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010,22(12): 1738-1751. |
[13] | 盛伟国, 单鹏霄 . 一种基于小生境的负相关神经网络集成算法[J]. 浙江工业大学学报, 2016(5): 482-486. |
SHENG W G , SHAN P X . Negative correlation neural network ensemble based on a niching algorithm[J]. Journal of Zhejiang University of Technology, 2016(5): 482-486. | |
[14] | SHENG W G , SHAN P , CHEN S ,et al. A niching evolutionary algorithm with adaptive negative correlation learning for neural network ensemble[J]. Neurocomputing, 2017,247: 173-182. |
[15] | PADILHA C A , BARONE D A C , NETO A D D . A multi-level approach using genetic algorithms in an ensemble of least squares support vector machines[J]. Knowledge-Based Systems, 2016,106: 85-95. |
[16] | YAO X , FISCHER M , BROWN G . Neural network ensembles and their application to traffic flow prediction in telecommunications networks[C]// Proceedings of 2001 International Joint Conference on Neural Networks. Piscataway:IEEE Press, 2001: 693-698. |
[17] | JIN Y , OKABE T , SENDHOFF B . Neural network regularization and ensembling using multi-objective evolutionary algorithms[C]// Proceedings of The 2004 Congress on Evolutionary Computation. Piscataway:IEEE Press, 2004: 1-8. |
[18] | 胡梦月, 胡志坚, 仉梦林 ,等. 基于改进 AdaBoost.RT 和 KELM的风功率预测方法研究[J]. 电网技术, 2017,41(2): 536-542. |
HU M Y , HU Z J , ZHANG M L ,et al. Research on wind power forecasting method based on improved AdaBoost.RT and KELM algorithm[J]. Power System Technology, 2017,41(2): 536-542. | |
[19] | BUI L T , DINH T T H ,et al. A novel evolutionary multi-objective ensemble learning approach for forecasting currency exchange rates[J]. Data & Knowledge Engineering, 2018,114: 40-66. |
[20] | HANDL J , KNOWLES J . An evolutionary approach to multiobjective clustering[J]. IEEE Transactions on Evolutionary Computation, 2007,11(1): 56-76. |
[21] | MOHAMMADI M , NIKANJAM A , RAHMANI A . An evolutionary approach to clustering ensemble[C]// Proceedings of the 4th International Conference on Natural Computation. Piscataway:IEEE Press, 2008: 77-82. |
[22] | OBO T , KUBOTA N , LOO C K . Evolutionary ensemble learning of fuzzy randomized neural network for posture recognition[C]// Proceedings of 2016 World Automation Congress. Piscataway:IEEE Press, 2016: 1-6. |
[23] | OJHA V K , ABRAHAM A , SNASEL V . Ensemble of heterogeneous flexible neural trees using multiobjective genetic programming[J]. Applied Soft Computing, 2017,52: 909-924. |
[24] | MINKU L L , YAO X . Software effort estimation as a multiobjective learning problem[J]. ACM Transactions on Software Engineering and Methodology, 2013,22(4): 1-32. |
[25] | SMITH C , JIN Y . Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction[J]. Neurocomputing, 2014,143: 302-311. |
[26] | MIN S H . A genetic algorithm-based heterogeneous random subspace ensemble model for bankruptcy prediction[J]. International Journal of Applied Engineering Research, 2016,11: 2927-2931. |
[27] | EKBAL A , SAHA S . A multiobjective simulated annealing approach for classifier ensemble:named entity recognition in indian languages as case studies[J]. Expert Systems with Applications, 2011,38(12): 14760-14772. |
[28] | 任克强, 高晓林, 谢斌 . 基于 AFSA 和 PSO 融合优化的 AdaBoost人脸检测算法[J]. 小型微型计算机系统, 2016,37(4): 861-865. |
REN K Q , GAO X L , XIE B . AdaBoost face detection algorithm based on fusion optimization of AFSA and PSO[J]. Journal of Chinese Computer Systems, 2016,37(4): 861-865. | |
[29] | ONAN A , KORUKOGLU S , BULUT H . A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification[J]. Expert Systems with Applications, 2016,62: 1-16. |
[30] | ABRAHAM A , GROSAN C , HAN S Y ,et al. Evolutionary multiobjective optimization approach for evolving ensemble of intelligent paradigms for stock market modeling[C]// Proceedings of 2005 Mexican International Conference on Artificial Intelligence. Heidelberg:Springer-Verlag, 2005: 673-681. |
[31] | CHEN Y , YANG B , ABRAHAM A . Flexible neural trees ensemble for stock index modeling[J]. Neurocomputing, 2007,70(4-6): 697-703. |
[32] | ALAMANIOTIS M , IKONOMOPOULOS A , TSOUKALAS L H . Evolutionary multiobjective optimization of kernel-based very-shortterm load forecasting[J]. IEEE Transactions on Power Systems, 2012,27(3): 1477-1484. |
[33] | YOON H S , AHN S Y , LEE S H ,et al. Heterogeneous clustering ensemble method for combining different cluster results[C]// Proceedings of the International Workshop on Data Mining for Biomedical Applications. Heidelberg:Springer-Verlag, 2006: 82-92. |
[34] | LUO H , JING F , XIE X . Combining multiple clusterings using information theory based genetic algorithm[C]// Proceedings of 2006 International Conference on Computational Intelligence and Security. Piscataway:IEEE Press, 2006: 84-89. |
[35] | QIAN X , ZHANG X , JIAO L ,et al. Unsupervised texture image segmentation using multiobjective evolutionary clustering ensemble algorithm[C]// Proceedings of 2008 IEEE Congress on Evolutionary Computation. Piscataway:IEEE Press, 2008: 3561-3567. |
[36] | WAHID A , GAO X , ANDREAE P . Multi-objective multi-view clustering ensemble based on evolutionary approach[C]// Proceedings of 2015 IEEE Congress on Evolutionary Computation. Piscataway:IEEE Press, 2015: 1696-1703. |
[37] | WANG Y , LIU X , XIANG L . Ga-based membrane evolutionary algorithm for ensemble clustering[J]. Computational Intelligence and Neuroscience, 2017. |
[38] | LI X , ZHANG S , WONG K C . Single-cell RNA-seq interpretations using evolutionary multiobjective ensemble pruning[J]. Bioinformatics, 2019,35(16): 2809-2817. |
[39] | REN Y , ZHANG L , SUGANTHAN P N . Ensemble classification and regression-recent developments,applications and future directions[J]. IEEE Computational Intelligence Magazine, 2016,11(1): 41-53. |
[40] | MENDES-MOREIRA J , SOARES C , JORGE A M ,et al. Ensemble approaches for regression:a survey[J]. ACM Computing Surveys, 2012,45(1): 1-40. |
[41] | VEGA-PONS S , RUIZ-SHULCLOPER J . A survey of clustering ensemble algorithms[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2011,25(3): 337-372. |
[42] | MENDES-MOREIRA J , SOARES C , JORGE A M ,et al. Ensemble approaches for regression:a survey[J]. ACM Computing Surveys, 2012,45(1): 1-40. |
[43] | FREUND Y , SCHAPIRE R E ,et al. Experiments with a new boosting algorithm[C]// Proceedings of the 13th International Conference on Machine Learning.[S.l.:s.n.], 1996: 148-156. |
[44] | BREIMAN L . Bagging predictors[J]. Machine Learning, 1996,24(2): 123-140. |
[45] | TING K M , WITTEN I H . Stacking bagged and dagged models[C]// Proceedings of the 14th International Conference on Machine Learning.San Francisco:Morgan Kaufmann Publishers Inc. , 1997: 367-375. |
[46] | HO T K . The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(8): 832-844. |
[47] | WOLPERT D H . Stacked generalization[J]. Neural Networks, 1992,5(2): 241-259. |
[48] | MORENO-SECO F , INESTA J M , DE LEON P J P ,et al. Comparison of classifier fusion methods for classification in pattern recognition tasks[C]// Proceedings of the Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR). Heidelberg:Springer-Verlag, 2006: 705-713. |
[49] | DIETTERICH T G , . Ensemble methods in machine learning[C]// Proceedings of the 1st International Workshop on Multiple Classifier Systems. Heidelberg:Springer-Verlag, 2000: 1-15. |
[50] | JAMES G M . Variance and bias for general loss functions[J]. Machine Learning, 2003,51(2): 115-135. |
[51] | KLEINBERG E . Stochastic discrimination[J]. Annals of Mathematics and Artificial Intelligence, 1990,1(1-4): 207-239. |
[52] | SCHAPIRE R E , FREUND Y , BARTLETT P ,et al. Boosting the margin:a new explanation for the effectiveness of voting methods[J]. The Annals of Statistics, 1998,26(5): 1651-1686. |
[53] | FRANK E , PFAHRINGER B . Improving on bagging with input smearing[C]// Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin:Springer, 2006: 97-106. |
[54] | BREIMAN L . Randomizing outputs to increase prediction accuracy[J]. Machine Learning, 2000,40(3): 229-242. |
[55] | LIN H T , LI L . Infinite ensemble learning with support vector machines[C]// European Conference on Machine Learning. Heidelberg:Springer-Verlag, 2005: 242-254. |
[56] | BI Y . The impact of diversity on the accuracy of evidential classifier ensembles[J]. International Journal of Approximate Reasoning, 2012,53(4): 584-607. |
[57] | 张春霞, 张讲社 . 选择性集成学习算法综述[J]. 计算机学报, 2011,34(8): 1399-1410. |
ZHANG C X , ZHANG J S . A survey of selective ensemble learning algorithms[J]. Chinese Journal of Computers, 2011,34(8): 1399-1410. | |
[58] | SAGI O , ROKACH L . Ensemble learning:a survey[J]. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2018,8(4): e1249. |
[59] | PACL′IK P , LANDGREBE T C , TAX D M ,et al. On deriving the second-stage training set for trainable combiners[C]// Proceedings of the 6th International Workshop on Multiple Classifier Systems. Heidelberg:Springer-Verlag, 2005: 136-146. |
[60] | 张春霞 . 集成学习中有关算法的研究[D]. 西安:西安交通大学, 2010. |
ZHANG C X . Research on some algorithms in ensemble learning[D]. Xi’an:Xi’an Jiaotong University, 2010. | |
[61] | ROONEY N , PATTERSON D , ANAND S ,et al. Dynamic integration of regression models[C]// Proceedings of the 5th International Workshop on Multiple Classifier Systems. Heidelberg:Springer-Verlag, 2004: 164-173. |
[62] | VALENTINI G , MASULLI F . Ensembles of learning machines[C]// Proceedings of the 13th Italian Workshop on Neural Nets. Heidelberg:Springer-Verlag, 2002: 3-20. |
[63] | ZHOU Z H , WU J , TANG W . Ensembling neural networks:many could be better than all[J]. Artificial Intelligence, 2002,137(1-2): 239-263. |
[64] | WANG Y , LI B . Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization[J]. Memetic Computing, 2010,2(1): 3-24. |
[65] | YEN G G , HE Z . Performance metric ensemble for multiobjective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2013,18(1): 131-144. |
[66] | QIU X , SUGANTHAN P N , AMARATUNGA G A . Ensemble incremental learning random vector functional link network for short-term electric load forecasting[J]. Knowledge-Based Systems, 2018,145: 182-196. |
[67] | QIU X , REN Y , SUGANTHAN P N ,et al. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting[J]. Applied Soft Computing, 2017,54: 246-255. |
[68] | YUE C , LIANG J , QU B ,et al. Multimodal multiobjective optimization in feature selection[C]// Proceedings of 2019 IEEE Congress on Evolutionary Computation. Piscataway:IEEE Press, 2019: 302-309. |
[69] | YUE C , QU B , LIANG J . A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems[J]. IEEE Transactions on Evolutionary Computation, 2017,22(5): 805-817. |
[70] | HU Y , WANG J , LIANG J ,et al. A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm[J]. Science China-information Sciences, 2019,62(7): 1-17. |
[71] | AIN Q U , SAHAF H A , XUE B ,et al. A genetic programming approach to feature construction for ensemble learning in skin cancer detection[C]// Proceedings of the 2020 Genetic and Evolutionary Computation Conference. New York:ACM Press, 2020: 1186-1194. |
[72] | ZENG J , XU H Y , GONG G L ,et al. An heterogeneous stacking ensemble model for laser-induced breakdown spectroscopy elemental quantitative analysis[J]. IEEE Access, 2020,8: 136141-136150. |
[73] | HUANG T , DUAN D T , GONG Y J ,et al. Concurrent optimization of multiple base learners in neural network ensembles:an adaptive niching differential evolution approach[J]. Neurocomputing, 2020,396: 24-38. |
[74] | YAN S , WANG Y , KONG D ,et al. Hybrid chain-hypergraph p systems for multiobjective ensemble clustering[J]. IEEE Access, 2019,9: 143511-143523. |
[75] | MINKU L L , YAO X . An analysis of multi-objective evolutionary algorithms for training ensemble models based on different performance measures in software effort estimation[C]// Proceedings of the 9th International Conference on Predictive Models in Software Engineering.[S.l.:s.n.], 2013: 1-10. |
[76] | LIU W , WU W , WANG Y ,et al. Selective ensemble learning method for belief-rule-base classification system based on PAES[J]. Big Data Mining and Analytics, 2019,2(4): 306-318. |
[77] | FACELI K , DE CARVALHO A C , DE SOUTO M C . Multi-objective clustering ensemble[J]. International Journal of Hybrid Intelligent Systems, 2007,4(3): 145-156. |
[78] | LIU R , LIU Y , LI Y . An improved method for multi-objective clustering ensemble algorithm[C]// Proceedings of the 2012 IEEE Congress on Evolutionary Computation. Piscataway:IEEE Press, 2012: 1-8. |
[79] | GOUDOS S , ATHANASIADOU G E . Application of an ensemble method to uav power modeling for cellular communications[J]. IEEE Antennas and Wireless Propagation Letters, 2019(99): 1. |
[80] | DAI H , SHENG W . A multi-objective clustering ensemble algorithm with automatic k-determination[C]// Proceedings of the 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis. Piscataway:IEEE Press, 2019: 333-337. |
[81] | MINKU F L , LUDERMIR T B . Clustering and co-evolution to construct neural network ensembles:an experimental study[J]. Neural Networks, 2008,21(9): 1363-1379. |
[82] | RAHMAN A , VERMA B . Cluster oriented ensemble classifiers using multi-objective evolutionary algorithm[C]// Proceedings of the 2013 International Joint Conference on Neural Networks. Piscataway:IEEE Press, 2013: 1-6. |
[83] | COLETTA L F , HRUSCHKA E R , ACHARYA A ,et al. A differential evolution algorithm to optimise the combination of classifier and cluster ensembles[J]. International Journal of Bio-Inspired Computation, 2015,7(2): 111-124. |
[84] | JAN Z M , VERMA B K . Evolutionary classifier and cluster selection approach for ensemble classification[J]. ACM Transactions on Knowledge Discovery from Data, 2019. |
[85] | JIANG F , HE J , TIAN T . A clustering-based ensemble approach with improved pigeon-inspired optimization and extreme learning machine for air quality prediction[J]. Applied Soft Computing, 2019,85: 105827. |
[86] | ONAN A , KORUKOGLU S , BULUT H . A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification[J]. Information Processing and Management, 2017,53(4): 814-833. |
[1] | Hui XU. Sidelink resource allocation algorithm of C-V2X based on deep Q learning [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 83-91. |
[2] | Yun WANG, Meiyun WANG, Jian ZHOU, Yuanyuan ZOU, Shaoyuan LI. Dynamic configuration of distribution network based on improved hierarchical clustering and GL-APSO algorithm [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(3): 410-417. |
[3] | Dongwei HU, Xiaolu FENG. Theoretical framework of brain modelling and highlighted problems [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 412-434. |
[4] | Hong SHAO, Mingkun ZHANG, Wencheng CUI. Classification method of dermoscopic image based on hierarchical convolution neural network [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 474-481. |
[5] | Chenxi LIU, Binghong LIU, Xian ZHANG, Xinnan LONG, Mugen PENG. Intelligent service oriented fog radio access network:principles, technologies and challenges [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 10-17. |
[6] | Liang ZHAO, Zhifeng XIE, Kunpeng ZHANG, Yuqing ZHENG, Yuankun FU. Modeling signal propagation in wireless network:an interval type-2 fuzzy ensemble deep learning approach [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 401-411. |
[7] | Zhidong XU,Bingyang CHEN,Xiao WANG,Weishan ZHANG. Research on capsule network-based for aspect-level sentiment classification [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 284-292. |
[8] | Hanping CAO,Xiaojing ZHANG,Ruijie ZHU,Xiaola HUANG. Application and practice of machine learning model in real-time anti-fraud in the era of digital finance [J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(4): 342-351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|