Chinese Journal of Intelligent Science and Technology ›› 2020, Vol. 2 ›› Issue (4): 401-411.doi: 10.11959/j.issn.2096-6652.202043
• Special Issue: Deep Reinforcement Learning • Previous Articles
Liang ZHAO, Zhifeng XIE, Kunpeng ZHANG, Yuqing ZHENG, Yuankun FU
Revised:
2020-11-30
Online:
2020-12-15
Published:
2020-12-01
Supported by:
CLC Number:
Liang ZHAO, Zhifeng XIE, Kunpeng ZHANG, et al. Modeling signal propagation in wireless network:an interval type-2 fuzzy ensemble deep learning approach[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 401-411.
"
模型 | MaxPE/dBm | MAE/dBm | MAPE | RMSE/dBm |
IT2_ResNet3 | 42.727 | 6.923 | 7.732% | 8.794 |
IT2_ResNet4 | 43.010 | 6.907 | 7.715% | 8.772 |
IT2_ResNet5 | 43.344 | 6.904 | 7.711% | 8.770 |
IT2_DBN3 | 42.018 | 7.332 | 8.213% | 9.264 |
IT2_DBN4 | 42.545 | 7.249 | 8.117% | 9.167 |
IT2_DBN5 | 45.084 | 7.127 | 7.976% | 9.034 |
IT2_SAE3 | 42.995 | 7.454 | 8.357% | 9.404 |
IT2_SAE4 | 43.096 | 7.429 | 8.331% | 9.377 |
IT2_SAE5 | 41.643 | 7.387 | 8.278% | 9.324 |
"
模型 | MaxPE/dBm | MAE/dBm | MAPE | RMSE/dBm |
IT2_RSD | 41.628 | 6.959 | 7.778% | 8.836 |
IT2_2RSD | 41.742 | 6.909 | 7.722% | 8.775 |
IT2_R2SD | 41.895 | 6.947 | 7.753% | 8.827 |
IT2_RS2D | 41.910 | 6.955 | 7.778% | 8.828 |
IT2_3RSD | 42.153 | 6.883 | 7.663% | 8.758 |
IT2_2R2SD | 41.809 | 6.906 | 7.713% | 8.775 |
IT2_2RS2D | 42.676 | 6.891 | 7.679% | 8.763 |
IT2_R3SD | 43.464 | 6.951 | 7.767% | 8.827 |
IT2_R2S2D | 41.057 | 6.949 | 7.763% | 8.825 |
"
个体深度学习器 | 评价标准 | 集成方法 | |||
FSE | FCE | BE | IT2FE | ||
ResNet3 | MaxPE/dBm | 43.344 | 43.250 | 43.450 | 42.727 |
MAE/dBm | 7.011 | 6.969 | 6.999 | 6.923 | |
MAPE | 7.838% | 7.768% | 7.820% | 7.732% | |
RMSE/dBm | 8.899 | 8.850 | 8.885 | 8.794 | |
RSD | MaxPE/dBm | 42.553 | 41.596 | 43.318 | 41.628 |
MAE/dBm | 7.025 | 6.969 | 7.010 | 6.959 | |
MAPE | 7.858% | 7.792% | 7.842% | 7.778% | |
RMSE/dBm | 8.915 | 8.846 | 8.895 | 8.836 |
[1] | SHAFI M , MOLISCH A F , SMITH P J ,et al. 5G:a tutorial overview of standards,trials,challenges,deployment,and practice[J]. IEEE Journal on Selected Areas in Communications, 2017,35(6): 1201-1221. |
[2] | RAPPAPORT T S , MACCARTNEY G R , SAMIMI M K ,et al. Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design[J]. IEEE Transactions on Communications, 2015,63(9): 3029-3056. |
[3] | RAPPAPORT T S . Wireless communications:principles and practice[M]. New Jersey: Prentice Hall PTR, 1996. |
[4] | ZAPPONE A , DI RENZO M , DEBBAH M . Wireless networks design in the era of deep learning:model-based,AI-based,or both?[J]. IEEE Transactions on Communications, 2019,67(10): 7331-7376. |
[5] | HATA M . Empirical formula for propagation loss in land mobile radio services[J]. IEEE Transactions on Vehicular Technology, 1980,29(3): 317-325. |
[6] | MEDEISIS A , KAJACKAS A . On the use of the universal Okumura-Hata propagation prediction model in rural areas[C]// 2000 IEEE 51st Vehicular Technology Conference. Piscataway:IEEE Press, 2000: 1815-1818. |
[7] | WERNER-ALLEN G , LORINCZ K , RUIZ M ,et al. Deploying a wireless sensor network on an active volcano[J]. IEEE Internet Computing, 2006,10(2): 18-25. |
[8] | DUNCAN C A . Finite difference time domain analysis of fractal antennas used in wireless communications[D]. Miami:Florida International University, 2004. |
[9] | POPOOLA S I , ATAYERO A A , FARUK N ,et al. Standard propagation model tuning for path loss predictions in built-up environments[C]// International Conference on Computational Science and Its Applications. Cham:Springer, 2017: 363-375. |
[10] | SUN Y H , PENG M , ZHOU Y C ,et al. Application of machine learning in wireless networks:key techniques and open issues[J]. IEEE Communications Surveys & Tutorials, 2019,21(4): 3072-3108. |
[11] | ALDOSSARI S M , CHEN K C . Machine learning for wireless communication channel modeling:an overview[J]. Wireless Personal Communications, 2019,106(1): 41-70. |
[12] | POPESCU I , NIKITOPOULOS D , CONSTANTINOU P ,et al. ANN prediction models for outdoor environment[C]// 2006 IEEE 17th International Symposium on Personal,Indoor and Mobile Radio Communications. Piscataway:IEEE Press, 2006: 1-5. |
[13] | ZHAO X N , HOU C P , WANG Q . A new SVM-based modeling method of cabin path loss prediction[J]. International Journal of Antennas and Propagation, 2013(2): 718-720. |
[14] | ZINEB A B , AYADI M . A multi-wall and multi-frequency indoor path loss prediction model using artificial neural networks[J]. Arabian Journal for Science and Engineering, 2016,41(3): 987-996. |
[15] | HERATH J D , SEETHARAM A , RAMESH A . A deep learning model for wireless channel quality prediction[C]// 2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-6. |
[16] | SOTIROUDIS S P , GOUDOS S K , SIAKAVARA K . Deep learning for radio propagation:using image-driven regression to estimate path loss in urban areas[J]. ICT Express, 2020,6(3): 160-165. |
[17] | THRANE J , ZIBAR D , CHRISTIANSEN H L . Model-aided deep learning method for path loss prediction in mobile communication systems at 2.6 GHz[J]. IEEE Access, 2020,8: 7925-7936. |
[18] | YUN Z Q , ISKANDER M F . Ray tracing for radio propagation modeling:principles and applications[J]. IEEE Access, 2015,3: 1089-1100. |
[19] | KHALID S , KHALIL T , NASREEN S . A survey of feature selection and feature extraction techniques in machine learning[C]// 2014 Science and Information Conference. Piscataway:IEEE Press, 2014: 372-378. |
[20] | CHANDRASHEKAR G , SAHIN F . A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014,40(1): 16-28. |
[21] | HINTON G E , SALAKHUTDINOV R R . Reducing the dimensionality of data with neural networks[J]. Science, 2006,313(5786): 504-507. |
[22] | HE K M , ZHANG X Y , REN S Q ,et al. Deep residual learning for image recognition[C]// The IEEE Conference On Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 770-778. |
[23] | ZADEH L A . The concept of a linguistic variable and its application on approximate reasoning-I[J]. Information Sciences, 1975,8(3): 199-249. |
[24] | MENDEL J M . Uncertain rule-based fuzzy systems:introduction and new directions (second edition)[M]. Berlin: Springer, 2017: 684. |
[25] | 伍冬睿, 曾志刚, 莫红 ,等. 区间二型模糊集和模糊系统:综述与展望[J]. 自动化学报, 2020,46(8): 1539-1556. |
WU D R , ZENG Z G , MO H ,et al. Interval type-2 fuzzy sets and system:overview and outlook[J]. Acta Automatica Sinica, 2020,46(8): 1539-1556. | |
[26] | DONG X B , YU Z W , CAO W M ,et al. A survey on ensemble learning[J]. Frontiers of Computer Science, 2020: 1-18. |
[27] | KRAWCZYK B , MINKU L L , GAMA J ,et al. Ensemble learning for data stream analysis:a survey[J]. Information Fusion, 2017,37: 132-156. |
[28] | BREIMAN L . Stacked regressions[J]. Machine learning, 1996,24(1): 49-64. |
[29] | WOLPERT D H . Stacked generalization[J]. Neural networks, 1992,5(2): 241-259. |
[30] | GARIBALDI JONATHAN M, 陈虹宇, 李小双, . 差异与学习:模糊系统与模糊推理[J]. 智能科学与技术学报, 2019,1(4): 319-326. |
GARIBALDI JONATHAN M , CHEN H Y , LI X S . Variation and learning:fuzzy system and fuzzy inference[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(4): 319-326. | |
[31] | 陈德旺, 蔡际杰, 黄允浒 . 面向可解释性人工智能与大数据的模糊系统发展展望[J]. 智能科学与技术学报, 2019,1(4): 327-334. |
CHEN D W , CAI J J , HUANG Y H . Development prospect of fuzzy system oriented to interpretable artificial intelligence and big data[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(4): 327-334. | |
[32] | 杜宏庆, 陈德旺, 黄允浒 ,等. 基于改进遗传算法与支持度的模糊系统优化建模方法[J]. 智能科学与技术学报, 2020,2(2): 179-185. |
DU H Q , CHEN D W , HUANG Y H ,et al. A fuzzy system optimization modeling method based on improved genetic algorithm and support degree[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(2): 179-185. |
[1] | Zhe HUANG, Yongcai WANG, Deying LI. A survey of 3D object detection algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 7-31. |
[2] | Jingwei LU, Xiang CHENG, Fei-Yue WANG. Artificial intelligence and deep learning methods for solving differential equations: the state of the art and prospects [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 461-476. |
[3] | Jun ZHANG, Peidong XU, Siyuan CHEN, Tianlu GAO, Yuxin DAI, Ke ZHANG, Hang ZHAO, Jiemai GAO, Yuyang BAI, Jinxing LI, Haoran ZHANG, Xiang LI, Jiuxiang CHEN. A hybrid physics-data-knowledge driven approach for human-machine hybrid-augmented intelligence-based system management and control [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 571-583. |
[4] | Yan CHEN, Xueqin LUO, Wei LIANG, Yongfang XIE. Depression recognition based on emotional information fused with attentional mechanism [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 600-609. |
[5] | Renwu LI, Lingxiao ZHANG, Lin GAO, Chunpeng LI, Hao JIANG. Category-level object pose estimation from depth point cloud [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 246-254. |
[6] | Linhui LI, Bin ZHOU, Weiwei REN, Jing LIAN. Review of pedestrian trajectory prediction methods [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 399-411. |
[7] | Ying LI, Long CHEN, Zhaohong HUANG, Yang SUN, Guorong CAI. Plant leaf detection technology based on multi-scale CNN feature fusion [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 304-311. |
[8] | Qing TIAN, Rong HU, Zuoyong LI, Yuanzheng CAI, Zhaochai YU. Insulator detection based on SE-YOLOv5s [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 312-321. |
[9] | Wen LIU, Kunlin HU, Yan LI, Zhao LIU. A review of prediction methods for moving target trajectories [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 149-160. |
[10] | Yang ZHANG, Yue HU, Dongrong XIN. A deep learning short-term traffic flow prediction method considering spatial-temporal association [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 172-178. |
[11] | Yi HU, Boyang QU, Jing LIANG, Jie WANG, Yanli WANG. A survey on evolutionary ensemble learning algorithm [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 18-35. |
[12] | Dongjun LIU, Yuhan WANG, Wenfen LING, Yong PENG, Wanzeng KONG. Emotion recognition based on brain and machine collaborative intelligence [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 65-75. |
[13] | Sijia TIAN,Qiang GU,Rong HU,Ruige LI,Dingxin HE. A robot sorting method based on deep learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 268-274. |
[14] | Fei-Yue WANG,Dongpu CAO,Qinglai WEI. Reinforcement learning:toward action-knowledge merged intelligent mechanisms and algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 101-106. |
[15] | Xiaofeng YUAN,Yalin WANG,Chunhua YANG,Weihua GUI. The application of deep learning in data-driven modeling of process industries [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 107-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|