Chinese Journal of Intelligent Science and Technology ›› 2022, Vol. 4 ›› Issue (2): 277-287.doi: 10.11959/j.issn.2096-6652.202230
• Papers and Reports • Previous Articles Next Articles
Jiacheng LIU1, Xiangwen ZHANG1,2
Online:
2022-06-15
Published:
2022-06-01
Supported by:
CLC Number:
Jiacheng LIU,Xiangwen ZHANG. TD3-based energy management strategy for hybrid energy storage system of electric vehicle[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 277-287.
"
参数名称 | 描述 | 参数值 |
Actor网络层参数 | 各连接层神经元数量 | (4,100,100,1) |
Critic网络层参数 | 各连接层神经元数量 | (5,100,100,1) |
折扣因子 | 用于计算长期折扣奖励 | 0.95 |
Actor网络学习率 | 策略梯度更新步长 | 0.001 |
Critic网络学习率 | Q函数网络梯度下降更新步长 | 0.001 |
优化算法类型 | 用于梯度下降 | Adam |
经验池尺寸 | 用于样本存储 | 104 |
样本学习个数 | 一次批量梯度下降中的样本数量 | 64 |
软更新因子 | 目标网络参数更新速度 | 0.001 |
策略频率 | 用于延迟策略更新 | 2 |
策略噪声 | 添加在目标动作中的正态分布方差 | 0.2 |
裁剪幅度 | 指定裁剪的高斯噪声范围 | (-0.5,0.5) |
循环工况长度 | 所用UDDS长度 | 1 370 |
循环次数 | 训练次数 | 300 |
[1] | 崔淑梅, 宋贝贝, 王志远 . 电动汽车动态无线供电磁耦合机构研究综述[J]. 电工技术学报, 2022,37(3): 537-554. |
CUI S M , SONG B B , WANG Z Y . Overview of magnetic coupler for electric vehicles dynamic wireless charging[J]. Transactions of China Electrotechnical Society, 2022,37(3): 537-554. | |
[2] | 张文爽, 李键, 余文涛 ,等. 基于新一代电源控制器的锂电池在轨管理分析[J]. 电源技术, 2022,46(1): 109-112. |
ZHANG W S , LI J , YU W T ,et al. Analysis and verification of in-orbit management of lithiumion battery based on the new generation of power control unit[J]. Chinese Journal of Power Sources, 2022,46(1): 109-112. | |
[3] | 靳聪, 高申, 孙世光 ,等. 基于无损检测的生命周期锂离子动力电池安全性分析[J]. 储能科学与技术, 2019,8(2): 259-263. |
JIN C , GAO S , SUN S G ,et al. Analysis of safety performance of lithium-ion power battery during life cycle based on non-destructive testing[J]. Energy Storage Science and Technology, 2019,8(2): 259-263. | |
[4] | 魏东涛, 黄之杰, 孔华 ,等. 蓄电池 SOC 的研究及预测方法[J]. 电源技术, 2016,40(6): 1321-1323. |
WEI D T , HUANG Z J , KONG H ,et al. Battery SOC research and prediction methods[J]. Chinese Journal of Power Sources, 2016,40(6): 1321-1323. | |
[5] | ZHAI C J , LUO F , LIU Y G . A novel predictive energy management strategy for electric vehicles based on velocity prediction[J]. IEEE Transactions on Vehicular Technology, 2020,69(11): 12559-12569. |
[6] | ZHANG L J , YE X M , XIA X H ,et al. A real-time energy management and speed controller for an electric vehicle powered by a hybrid energy storage system[J]. IEEE Transactions on Industrial Informatics, 2020,16(10): 6272-6280. |
[7] | 周美兰, 冯继峰, 张宇 . 纯电动汽车复合储能系统及其能量控制策略[J]. 电机与控制学报, 2019,23(5): 51-59. |
ZHOU M L , FENG J F , ZHANG Y . Composite energy storage system and its energy control strategy for electric vehicles[J]. Electric Machines and Control, 2019,23(5): 51-59. | |
[8] | 胡杰, 刘迪, 杜常清 ,等. 电动汽车复合能源系统能量管理策略研究[J]. 机械科学与技术, 2020,39(10): 1606-1614. |
HU J , LIU D , DU C Q ,et al. Study on energy management strategy of hybrid energy storage system for electric vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2020,39(10): 1606-1614. | |
[9] | 孙永健 . 某型纯电动客车复合电源系统优化设计与控制[D]. 长春:吉林大学, 2017. |
SUN Y J . The optimization design and control of hybrid energy storage system for A certain type electric bus[D]. Changchun:Jilin University, 2017. | |
[10] | CHEN Z Y , XIONG R , CAO J Y . Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions[J]. Energy, 2016,96: 197-208. |
[11] | ZHANG S , XIONG R , SUN F C . Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system[J]. Applied Energy, 2017,185: 1654-1662. |
[12] | VáZQUEZ-CANTELI J R , NAGY Z . Reinforcement learning for demand response:a review of algorithms and modeling techniques[J]. Applied Energy, 2019,235: 1072-1089. |
[13] | XIONG R , CAO J Y , YU Q Q . Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle[J]. Applied Energy, 2018,211: 538-548. |
[14] | WU J D , HE H W , PENG J K ,et al. Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus[J]. Applied Energy, 2018,222: 799-811. |
[15] | KONG H F , YAN J P , WANG H ,et al. Energy management strategy for electric vehicles based on deep Q-learning using Bayesian optimization[J]. Neural Computing and Applications, 2020,32(18): 14431-14445. |
[16] | LI W H , CUI H , NEMETH T ,et al. Deep reinforcement learning-based energy management of hybrid battery systems in electric vehicles[J]. Journal of Energy Storage, 2021,36: 102355. |
[17] | TAN H C , ZHANG H L , PENG J K ,et al. Energy management of hybrid electric bus based on deep reinforcement learning in continuous state and action space[J]. Energy Conversion and Management, 2019,195: 548-560. |
[18] | WU Y K , TAN H C , PENG J K ,et al. Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus[J]. Applied Energy, 2019,247: 454-466. |
[19] | SCHULMAN J , WOLSKI F , DHARIWAL P ,et al. Proximal policy optimization algorithms[J]. arXiv preprint,2017,arXiv:1707.06347. |
[20] | SONG Z Y , HOU J , HOFMANN H ,et al. Sliding-mode and Lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles[J]. Energy, 2017,122: 601-612. |
[21] | QI X W , WU G Y , BORIBOONSOMSIN K ,et al. Data-driven reinforcement learning–based real-time energy management system for plug-in hybrid electric vehicles[J]. Transportation Research Record:Journal of the Transportation Research Board, 2016,2572(1): 1-8. |
[22] | LILLICRAP T P , HUNT J J , PRITZEL A ,et al. Continuous control with deep reinforcement learning[J]. arXiv preprint,2015,arXiv:1509.02971. |
[23] | FUJIMOTO S , VAN HOOF H , MEGER D . Addressing function approximation error in actor-critic methods[J]. arXiv preprint,2018,arXiv:1802.09477. |
[24] | 丁镇涛, 邓涛, 李志飞 ,等. 基于安时积分和无迹卡尔曼滤波的锂离子电池 SOC 估算方法研究[J]. 中国机械工程, 2020,31(15): 1823-1830. |
DING Z T , DENG T , LI Z F ,et al. SOC estimation of lithium-ion battery based on ampere hour integral and unscented Kalman filter[J]. China Mechanical Engineering, 2020,31(15): 1823-1830. |
[1] | Shuai MA, Qiming FU, Jianping CHEN, Fan FENG, You LU, Zhengwei LI, Shunian QIU. HVAC model-free optimal control method based on double-pools DQN [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(3): 426-444. |
[2] | Yuxiang SUN, Yihui PENG, Bin LI, Jiawei ZHOU, Xinlei ZHANG, Xianzhong ZHOU. Overview of intelligent game:enlightenment of game AI to combat deduction [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 157-173. |
[3] | Pu FENG, Wenjun WU, Jie LUO, Xin YU, Yongkai TIAN. Emergence measurement of robot swarm intelligence based on swarm entropy [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(1): 65-74. |
[4] | Zhiqiang HU. The framework model on internal mechanism of big data intelligent command and control [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 101-109. |
[5] | Zhaoyang LIU, Chaoxu MU, Changyin SUN. An overview on algorithms and applications of deep reinforcement learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 314-326. |
[6] | Tao LI, Qinglai WEI. Intelligent heating temperature control system based on deep reinforcement learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 348-353. |
[7] | Rizhong WANG, Huiping LI, Di CUI, Demin XU. Depth control of autonomous underwater vehicle using deep reinforcement learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 354-360. |
[8] | Huiqiao FU, Kaiqiang TANG, Guizhou DENG, Xinpeng WANG, Chunlin CHEN. Motion planning for hexapod robot using deep reinforcement learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 361-371. |
[9] | Yu SHEN,Jinpeng HAN,Lingxi LI,Fei-Yue WANG. AI in game intelligence—from multi-role game to parallel game [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 205-213. |
[10] | Hongye SU, Ze ZHOU, Zhitao LIU, Liyan Zhang. Research review and prospect of intelligent dynamic wireless charging system for electric vehicles [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(1): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|