Chinese Journal of Intelligent Science and Technology ›› 2022, Vol. 4 ›› Issue (3): 380-395.doi: 10.11959/j.issn.2096-6652.202233
• Papers and Reports • Previous Articles Next Articles
Yuanqi QIN1, Qingyuan JI2, Jun GE1, Xingyuan DAI3, Yuanyuan CHEN3, Xiao WANG3,4
Revised:
2022-07-10
Online:
2022-09-15
Published:
2022-09-01
Supported by:
CLC Number:
Yuanqi QIN, Qingyuan JI, Jun GE, et al. Short-term traffic state reasoning and precise prediction in urban networks[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(3): 380-395.
"
区域 | 类别 | 模型 | 早高峰 | 晚高峰 | |||||||
Hit@1 | Hit@3 | Hit@10 | MRR | Hit@1 | Hit@3 | Hit@10 | MRR | ||||
区域1 | 非知识图 | HA | 13.2 | 11.6 | |||||||
谱模型 | ARIMA | 18.6 | 16.4 | ||||||||
ST-GCN | 19.6 | 17.5 | |||||||||
AST-GCN | 19.4 | 20.3 | |||||||||
知识图谱 | T-TransE | 28.0 | 55.3 | 69.3 | 35.1 | 25.1 | 39.7 | 58.2 | 32.2 | ||
模型 | TA-TransE | 35.6 | 52.7 | 76.7 | 48.9 | 23.9 | 62.1 | 75 | 38.6 | ||
TA-DistMult | 57.1 | 61.8 | 83.1 | 57.5 | 41.0 | 65.1 | 72.8 | 52.8 | |||
RE-NET | 64.3 | 71.5 | 85.8 | 72.1 | 51.2 | 75.6 | 81.9 | 58.7 | |||
TP2 | |||||||||||
区域2 | 非知识图 | HA | 11.2 | 14.2 | |||||||
谱模型 | ARIMA | 14.5 | 16.6 | ||||||||
ST-GCN | 16.7 | 18.5 | |||||||||
AST-GCN | 22.7 | 21.1 | |||||||||
知识图谱 | T-TransE | 32.5 | 32.5 | 47.8 | 24.3 | 27.2 | 45.7 | 66.2 | 33.4 | ||
模型 | TA-TransE | 29.6 | 47.7 | 51.3 | 41.3 | 28.8 | 53.3 | 69.1 | 48.9 | ||
TA-DistMult | 42.5 | 58.4 | 73.5 | 52.8 | 43.0 | 57.9 | 76.3 | 57.9 | |||
RE-NET | 57.1 | 68.7 | 78.4 | 62.4 | 56.5 | 70.3 | 84.8 | 69.6 | |||
TP2 |
"
模型 | MAE | RMSE | MAPE |
HA | 7.61/9.14/12.0 | 8.87/11.4/16.5 | 21.8%/25.7%/33.9% |
SVR | 7.32/8.72/11.6 | 8.63/10.5/14.3 | 16.5%/19.8%/23.5% |
ARIMA | 5.18/6.79/9.27 | 6.02/7.11/9.74 | 14.8%/17.5%/20.1% |
GCN | 6.46/7.78/9.19 | 6.94/8.54/9.81 | 11.6%/13.2%/15.4% |
GRU | 5.34/5.87/7.27 | 6.48/6.88/8.53 | 11.2%/12.4%/14.0% |
T-GCN | 4.42/4.86/5.62 | 5.60/5.91/6.52 | 10.7%/11.5%/12.8% |
ST-GCN | 3.88/4.41/4.99 | 5.27/5.45/5.86 | 9.5%/9.8%/10.9% |
A3T-GCN | 3.65/3.89/4.24 | 4.62/4.93/5.34 | 9.2%/9.6%/10.5% |
TP2 | 2.99/3.21/3.39 | 4.05/4.40/4.59 | 8.6%/8.9%/9.3% |
[47] | LIU K H , YE Z H , GUO H Y ,et al. FISS GAN:a generative adversarial network for foggy image semantic segmentation[J]. IEEE/CAA Journal of Automatica Sinica, 2021,8(8): 1428-1439. |
[48] | SIMS A G , DOBINSON K W . The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits[J]. IEEE Transactions on Vehicular Technology, 1980,29(2): 130-137. |
[49] | CHEN Z H , YANG Y J , HUANG L P ,et al. Discovering urban traffic congestion propagation patterns with taxi trajectory data[J]. IEEE Access, 2018,6: 69481-69491. |
[50] | YU B , YIN H T , ZHU Z X . Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California:International Joint Conferences on Artificial Intelligence Organization, 2018. |
[51] | GUO S N , LIN Y F , FENG N ,et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33: 922-929. |
[52] | ADLER J , LUNZ S . Banach wasserstein GAN[J]. arxiv preprint, 2018,arXiv:1806.06621. |
[1] | WANG H H , CAO R X , ZENG W H . Multi-agent based and system dynamics models integrated simulation of urban commuting relevant carbon dioxide emission reduction policy in China[J]. Journal of Cleaner Production, 2020,272:122620. |
[2] | CHEN S H , ZHU F H , WANG F Y . An erlang-based simulation approach of artificial transportation systems[C]// Proceedings of 2016 IEEE 19th International Conference on Intelligent Transportation Systems. Piscataway:IEEE Press, 2016: 24-28. |
[3] | JIN J C , MA X L . A non-parametric Bayesian framework for traffic-state estimation at signalized intersections[J]. Information Sciences, 2019,498: 21-40. |
[4] | WU J P , CAO M , CHEUNG J C K ,et al. TeMP:temporal message passing for temporal knowledge graph completion[J]. arXiv preprint,2020,arXiv:2010.03526. |
[5] | SUN S M , CHEN J , SUN J . Traffic congestion prediction based on GPS trajectory data[J]. International Journal of Distributed Sensor Networks, 2019,15(5): 155014771984744. |
[6] | 贺冬冬 . 基于出租车轨迹数据的短时交通流预测模型研究[D]. 大连:大连海事大学, 2013. |
HE D D . The short-time prediction model of traffic flow based on taxi tragectory data[D]. Dalian:Dalian Maritime University, 2013. | |
[7] | ZHOU X Y , WANG W J , YU L . Traffic flow analysis and prediction based on GPS data of floating cars[M]// Lecture notes in electrical engineering. Heidelberg: Springer, 2012: 497-508. |
[8] | FOULADGAR M , PARCHAMI M , ELMASRI R ,et al. Scalable deep traffic flow neural networks for urban traffic congestion prediction[C]// Proceedings of 2017 International Joint Conference on Neural Networks. Piscataway:IEEE Press, 2017: 2251-2258. |
[9] | ZHU J W , HAN X , DENG H H ,et al. KST-GCN:a knowledge-driven spatial-temporal graph convolutional network for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022: 1-11. |
[10] | PETTY K F , MOYLAN A J . Traffic bottleneck detection and classification on a transportation network graph:US9330565[P]. 2016-05-03. |
[11] | CUI Z Y , KE R M , PU Z Y ,et al. Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction[J]. arXiv preprint,2018,arXiv:1801.02143. |
[12] | 宋珊珊 . 基于浮动车数据的短时交通流预测研究[D]. 大连:大连理工大学, 2019. |
SONG S S . Short-term traffic flow prediction based on floating car data[D]. Dalian:Dalian University of Technology, 2019. | |
[13] | 赵宏, 翟冬梅, 石朝辉 . 短时交通流预测模型综述[J]. 都市快轨交通, 2019,32(4): 50-54. |
ZHAO H , ZHAI D M , SHI C H . Review of short-term traffic flow forecasting models[J]. Urban Rapid Rail Transit, 2019,32(4): 50-54. | |
[14] | CHIABAUT N , FAITOUT R . Traffic congestion and travel time prediction based on historical congestion maps and identification of consensual days[J]. Transportation Research Part C:Emerging Technologies, 2021,124:102920. |
[15] | PAN B , DEMIRYUREK U , SHAHABI C . Utilizing real-world transportation data for accurate traffic prediction[C]// Proceedings of 2012 IEEE 12th International Conference on Data Mining. Piscataway:IEEE Press, 2012: 595-604. |
[16] | WILLIAMS B M , HOEL L A . Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003,129(6): 664-672. |
[17] | ALGHAMDI T , ELGAZZAR K , BAYOUMI M ,et al. Forecasting traffic congestion using ARIMA modeling[C]// Proceedings of 2019 15th International Wireless Communications & Mobile Computing Conference. Piscataway:IEEE Press, 2019: 1227-1232. |
[18] | CHEN C Y , HU J M , MENG Q ,et al. Short-time traffic flow prediction with ARIMA-GARCH model[C]// Proceedings of 2011 IEEE Intelligent Vehicles Symposium. Piscataway:IEEE Press, 2011: 607-612. |
[19] | DU Q B , YIN F M , LI Z C . Base station traffic prediction using XGBoost-LSTM with feature enhancement[J]. IET Networks, 2020,9(1): 29-37. |
[20] | SUN B , SUN T , JIAO P P . Spatio-temporal segmented traffic flow prediction with ANPRS data based on improved XGBoost[J]. Journal of Advanced Transportation,2021, 2021:5559562. |
[21] | VLAHOGIANNI E I , KARLAFTIS M G , KOPELIAS P . Modeling freeway travel speed across lanes:a vector autoregressive approach[C]// Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems. Piscataway:IEEE Press, 2010: 569-574. |
[22] | ANWAR T , LIU C F , VU H L ,et al. Capturing the spatiotemporal evolution in road traffic networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2018,30(8): 1426-1439. |
[23] | REMPE F , HUBER G , BOGENBERGER K . Spatio-temporal congestion patterns in urban traffic networks[J]. Transportation Research Procedia, 2016,15: 513-524. |
[24] | LYU Y S , DUAN Y J , KANG W W ,et al. Traffic flow prediction with big data:a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(2): 865-873. |
[25] | LI Z S , XIONG G , CHEN Y Y ,et al. A hybrid deep learning approach with GCN and LSTM for traffic flow prediction[C]// Proceedings of 2019 IEEE Intelligent Transportation Systems Conference. Piscataway:IEEE Press, 2019: 1929-1933. |
[26] | CHEN Y Y , CHEN H Y , YE P J ,et al. Acting as a decision maker:traffic-condition-aware ensemble learning for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(4): 3190-3200. |
[27] | DAI X Y , FU R , ZHAO E M ,et al. DeepTrend 2.0:a light-weighted multi-scale traffic prediction model using detrending[J]. Transportation Research Part C:Emerging Technologies, 2019,103: 142-157. |
[28] | LIN Y L , DAI X Y , LI L ,et al. Pattern sensitive prediction of traffic flow based on generative adversarial framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,20(6): 2395-2400. |
[29] | ZHANG W , ZHU F H , CHEN Y Y ,et al. Differential time-variant traffic flow prediction based on deep learning[C]// Proceedings of 2020 IEEE 23rd International Conference on Intelligent Transportation Systems. Piscataway:IEEE Press, 2020: 1-6. |
[30] | LIN Y L , DAI X Y , LI L ,et al. An efficient deep reinforcement learning model for urban traffic control[J]. arXiv preprint,2018,arXiv:1808.01876. |
[31] | CHEN Y W , WANG X , LI L X ,et al. Traffic situational awareness research and development enhanced by social media data:the state of the art and prospects[J]. Chinese Journal of Intelligent Science and Technology, 2022,4(1): 1-14. |
[32] | XU X J , GAO X B , XU Z Z ,et al. TCPModel:a short-term traffic congestion prediction model based on deep learning[M]// Communi cations in computer and information science. Singapore: Springer Singapore, 2019. |
[33] | ZHANG X Y , HUANG C , XU Y ,et al. Traffic flow forecasting with spatial-temporal graph diffusion network[J]. arXiv preprint,2021,arXiv:2110.04038. |
[34] | ZHU J W , WANG Q J , TAO C ,et al. AST-GCN:attribute-augmented spatiotemporal graph convolutional network for traffic forecasting[J]. IEEE Access, 2021,9: 35973-35983. |
[35] | ZHENG C P , FAN X L , WANG C ,et al. GMAN:a graph multi-attention network for traffic prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020,34(1): 1234-1241. |
[36] | NAGY A M , SIMON V . Improving traffic prediction using congestion propagation patterns in smart cities[J]. Advanced Engineering Informatics, 2021,50:101343. |
[37] | 张阳, 胡月, 辛东嵘 . 一种考虑时空关联的深度学习短时交通流预测方法[J]. 智能科学与技术学报, 2021,3(2): 172-178. |
ZHANG Y , HU Y , XIN D R . A deep learning short-term traffic flow prediction method considering spatial-temporal association[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(2): 172-178. | |
[38] | 陈美林, 郑治豪, 郭宝 ,等. 基于因果关联的交通拥堵传播分析[J]. 中南大学学报(自然科学版), 2020,51(12): 3575-3583. |
CHEN M L , ZHENG Z H , GUO B ,et al. Traffic congestion spreading analysis based on causal nexus[J]. Journal of Central South University (Science and Technology), 2020,51(12): 3575-3583. | |
[39] | NAGY A M , SIMON V . A novel congestion propagation modeling algorithm for smart cities[J]. Pervasive and Mobile Computing, 2021,73:101387. |
[40] | 陆浩, 王飞跃, 刘德荣 ,等. 基于科研知识图谱的近年国内外自动化学科发展综述[J]. 自动化学报, 2014,40(5): 994-1015. |
LU H , WANG F Y , LIU D R ,et al. Analytics of lastest research progress in automation discipline based on academic knowledge mapping[J]. Acta Automatica Sinica, 2014,40(5): 994-1015. | |
[41] | 赵学亮, 王涛, 王晓 ,等. 基于文献指标与合著网络的《自动化学报》2011-2016年发表论文分析研究[J]. 自动化学报, 2017,43(12): 2232-2243. |
ZHAO X L , WANG T , WANG X ,et al. A literature study on Acta Automatica Sinica during 2010 to 2016 with bibliographic and coauthorship analysis[J]. Acta Automatica Sinica, 2017,43(12): 2232-2243. | |
[42] | JIN J C , GUO H F , XU J ,et al. An end-to-end recommendation system for urban traffic controls and management under a parallel learning framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,22(3): 1616-1626. |
[43] | JIN W , QU M , JIN X S ,et al. Recurrent event network:autoregressive structure inference over temporal knowledge graphs[J]. arXiv preprint,2019,arXiv:1904.05530. |
[44] | CHO K , VAN MERRIENBOER B , GULCEHRE C ,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arxiv preprint,2014,arXiv:1406,1078. |
[45] | ZHANG Y X , WANG S Z , CHEN B ,et al. TrafficGAN:network-scale deep traffic prediction with generative adversarial nets[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,22(1): 219-230. |
[46] | JIN J C , RONG D D , ZHANG T ,et al. A GAN-based short-term link traffic prediction approach for urban road networks under a parallel learning framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2022(99): 1-12. |
[1] | Liang ZHAO, Zhifeng XIE, Kunpeng ZHANG, Yuqing ZHENG, Yuankun FU. Modeling signal propagation in wireless network:an interval type-2 fuzzy ensemble deep learning approach [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 401-411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|