Chinese Journal of Intelligent Science and Technology ›› 2022, Vol. 4 ›› Issue (3): 426-444.doi: 10.11959/j.issn.2096-6652.202208
• Papers and Reports • Previous Articles Next Articles
Shuai MA1,2,3, Qiming FU1,2,3, Jianping CHEN1,2,3, Fan FENG4, You LU1,2,3, Zhengwei LI5,6, Shunian QIU5,6
Revised:
2021-08-28
Online:
2022-09-15
Published:
2022-09-01
Supported by:
CLC Number:
Shuai MA, Qiming FU, Jianping CHEN, et al. HVAC model-free optimal control method based on double-pools DQN[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(3): 426-444.
"
系数 | 大冷机1# 和大冷机2# | 小冷机3# | |||||
DOE-2.1 generic centrifugal chiller(行号:11 170) | York VSD centrifugal chiller(行号:5 684) | ||||||
ChillerCapFTemp | ChillerEIRFTemp | ChillerEIRFPLR | ChillerCapFTemp | ChillerEIRFTemp | ChillerEIRFPLR | ||
b1、d1、g1 | 0.257896 | 0.933884 | 0.222903 | 0.4575085 | 0.6794525 | 0.07859908 | |
b2、d2、g2 | 0.0389016 | -0.058212 | 0.313387 | 0.1313508 | 0.06694756 | 0.1950291 | |
b3、d3、g3 | -0.00021708 | 0.00450036 | 0.463710 | -0.004408831 | -0.003625396 | 0.7241581 | |
b4、d4 | 0.0468684 | 0.00243 | — | 0.01930354 | -0.01018762 | — | |
b5、d5 | -0.00094284 | 0.000486 | — | -0.0005479641 | 0.001066394 | — | |
b6、d6 | -0.00034344 | -0.001215 | — | -0.001376580 | -0.00211342 | — | |
注:根据EnergyPlus V9.2 Engineering reference.pdf和Datasets/Chillers.idf |
"
系数序号 | 系数值 | 系数序号 | 系数值 | 系数序号 | 系数值 |
Coeff(1) | 0.52049709836241 | Coeff(2) | -10.617046395344 | Coeff(3) | 10.7292974722538 |
Coeff(4) | -2.74988377158227 | Coeff(5) | 4.73629943913743 | Coeff(6) | -8.25759700874711 |
Coeff(7) | 1.57640938114136 | Coeff(8) | 6.51119643791324 | Coeff(9) | 1.50433525206692 |
Coeff(10) | -3.2888529287801 | Coeff(11) | 0.0257786145353773 | Coeff(12) | 0.182464289315254 |
Coeff(13) | -0.0818947291400898 | Coeff(14) | -0.215010003996285 | Coeff(15) | 0.0186741309635284 |
Coeff(16) | 0.0536824177590012 | Coeff(17) | -0.00270968955115031 | Coeff(18) | 0.00112277498589279 |
Coeff(19) | -0.00127758497497718 | Coeff(20) | 0.0000760420796601607 | Coeff(21) | 1.43600088336017 |
Coeff(22) | -0.5198695909109 | Coeff(23) | 0.117339576910507 | Coeff(24) | 1.50492810819924 |
Coeff(25) | -0.135898905926974 | Coeff(26) | -0.152577581866506 | Coeff(27) | -0.0533843828114562 |
Coeff(28) | 0.00493294869565511 | Coeff(29) | -0.00796260394174197 | Coeff(30) | 0.000222619828621544 |
Coeff(31) | -0.0543952001568055 | Coeff(32) | 0.00474266879161693 | Coeff(33) | -0.0185854671815598 |
Coeff(34) | 0.00115667701293848 | Coeff(35) | 0.000807370664460284 |
"
年 | 第1轮 | 第2轮 | 第3轮 | 第4轮 | 第5轮 | 平均奖赏 |
第1年 | 10 349.89 | 10 357.77 | 10 387.58 | 10 363.52 | 10 366.72 | 10 365.1 |
第2年 | 10 535.55 | 10 509.10 | 10 513.19 | 10 500.12 | 10 496.02 | 105 10.80 |
第3年 | 10 597.68 | 10 559.71 | 10 582.77 | 10 570.67 | 10 577.30 | 10 577.63 |
第4年 | 10 601.53 | 10 613.87 | 10 613.42 | 10 608.57 | 10 616.41 | 10 610.76 |
第5年 | 10 600.53 | 10 606.80 | 10 589.93 | 10 625.97 | 10 610.18 | 10 606.68 |
第6年 | 10 652.15 | 10 603.44 | 10 628.59 | 10 625.11 | 10 622.89 | 10 626.44 |
第7年 | 10 747.57 | 10 638.37 | 10 599.96 | 10 625.98 | 10 638.49 | 10 650.07 |
第8年 | 10 745.00 | 10 700.56 | 10 605.54 | 10 695.93 | 10 619.20 | 10 673.25 |
第9年 | 10 757.94 | 10 744.98 | 10 718.23 | 10 736.72 | 10 680.65 | 10 727.70 |
第10年 | 10 752.87 | 10 734.93 | 10 742.69 | 10 746.35 | 10 752.39 | 10 745.85 |
第11年 | 10 762.14 | 10 738.32 | 10 744.64 | 10 744.21 | 10 754.14 | 10 748.69 |
第12年 | 10 769.02 | 10 744.01 | 10 762.12 | 10 733.01 | 10 750.21 | 10 751.67 |
第13年 | 10 756.92 | 10 744.24 | 10 747.26 | 10 748.52 | 10 756.01 | 10 750.59 |
第14年 | 10 772.67 | 10 743.76 | 10 764.79 | 10 760.99 | 10 760.07 | 10 760.46 |
第15年 | 10 769.84 | 10 750.26 | 10 759.73 | 10 752.60 | 10 762.29 | 10 758.94 |
第16年 | 10 762.88 | 10 744.44 | 10 765.18 | 10 743.96 | 10 756.43 | 10 754.58 |
第17年 | 10 761.88 | 10 750.15 | 10 754.62 | 10 745.17 | 10 762.10 | 10 754.78 |
第18年 | 10 761.18 | 10 750.95 | 10 758.79 | 10 756.46 | 10 757.46 | 10 756.97 |
第19年 | 10 758.67 | 10 759.30 | 10 756.47 | 10 756.38 | 10 770.90 | 10 760.34 |
第20年 | 10 762.38 | 10 752.29 | 10 762.39 | 10 761.24 | 10 763.33 | 10 760.33 |
"
方法 | 冷却水泵(大)/kWh | 冷却塔(大)/kWh | 冷却水泵(小)/kWh | 冷却塔(小)/kWh | 大冷机/kWh | 小冷机/kWh | 冷机能耗和/kWh | 总能耗/kWh |
baseline | 64 908.01647 | 25 587.13833 | 31 078.15252 | 12 251.1984 | 611 127.2573 | 167 894.455 | 779 021.7 | 912 846.2 |
model_based | 23 377.99124 | 7 907.06462 | 10 733.4084 | 3 138.543602 | 616 325.6191 | 145 865.508 | 762 191.1 | 807 348.1 |
DPs-DQN_第1年 | 33655.12816 | 13 027.18418 | 15 703.50809 | 6 114.719079 | 603 065.8731 | 172 638.5861 | 775 704.5 | 844 205.0 |
DPs-DQN_第2年 | 30 354.49095 | 12 298.02102 | 13 562.82658 | 5 219.839276 | 614 923.3224 | 153 671.347 | 768 594.7 | 830 029.8 |
DPs-DQN_第3年 | 28 842.43923 | 12 093.44981 | 12 860.63961 | 5 191.032207 | 618 803.9614 | 146 572.312 | 765 376.3 | 824 363.8 |
DPs-DQN_第4年 | 27 193.99196 | 11 220.04437 | 12 259.24104 | 5 017.730849 | 620 979.4015 | 143 765.5538 | 764 745.0 | 820 436.0 |
DPs-DQN_第5年 | 26 677.9163 | 11 320.42568 | 12 335.2977 | 5 140.941364 | 619 248.5502 | 145 726.6786 | 764 975.2 | 820 449.8 |
DPs-DQN_第6年 | 27 151.13763 | 11 732.73569 | 12 718.44811 | 5 239.95047 | 619 721.4394 | 144 886.1188 | 764 607.6 | 821 449.8 |
DPs-DQN_第7年 | 26 080.31963 | 10 901.35292 | 11 992.71584 | 4 506.80003 | 619 883.6275 | 144 882.4102 | 764 766.0 | 818 247.2 |
DPs-DQN_第8年 | 24 783.19592 | 9 404.312392 | 11 764.99045 | 4 000.551805 | 621 846.8614 | 142 298.1062 | 764 145.0 | 814 098.0 |
DPs-DQN_第9年 | 23 424.53443 | 8 122.959886 | 10 991.93368 | 3 640.873975 | 622 796.631 | 141 457.2419 | 764 253.9 | 810 434.2 |
DPs-DQN_第10年 | 23 527.48478 | 8 472.471621 | 11 063.05897 | 3 926.412888 | 622 494.1131 | 141 424.745 | 763 918.9 | 810 908.3 |
DPs-DQN_第11年 | 23 232.457 | 9 605.28206 | 11 015.67236 | 3 905.091689 | 621 612.5477 | 141 355.1308 | 762 967.7 | 810 726.2 |
DPs-DQN_第12年 | 24 146.31587 | 8 757.547623 | 11 160.67447 | 3 754.003801 | 621 371.5256 | 141 156.9539 | 762 528.5 | 810 347.0 |
DPs-DQN_第13年 | 23 514.53632 | 7 960.616987 | 11 126.74509 | 3 585.772903 | 622 803.198 | 141 377.8823 | 764 181.1 | 810 368.8 |
DPs-DQN_第14年 | 23 880.84119 | 8 901.725799 | 11 246.87424 | 3 786.493418 | 621 172.3233 | 141 200.1382 | 762 372.5 | 810 188.4 |
DPs-DQN_第15年 | 23 561.9639 | 8 645.72904 | 11 052.77735 | 3 844.50329 | 621 676.7996 | 141 117.5224 | 762 794.3 | 809 899.3 |
DPs-DQN_第16年 | 23 269.04265 | 8 487.371801 | 11 047.49848 | 3 798.053333 | 622 130.8019 | 141 782.3786 | 763 913.2 | 810 515.1 |
DPs-DQN_第17年 | 24 108.61137 | 8 110.85739 | 11 207.49851 | 3 636.430704 | 621 415.1327 | 141 520.7743 | 762 935.9 | 809 999.3 |
DPs-DQN_第18年 | 23 045.32234 | 7 956.261497 | 10 913.77962 | 3 612.96288 | 623 052.1172 | 141 519.1315 | 764 571.2 | 810 099.6 |
DPs-DQN_第19年 | 23 208.17606 | 8 183.664655 | 10 971.49878 | 3 539.736593 | 622 153.3032 | 141 358.4312 | 763 511.7 | 809 414.8 |
DPs-DQN_第20年 | 24 227.18333 | 7 564.407838 | 11 196.99755 | 3 473.707856 | 622 159.0155 | 141 306.4567 | 763 465.5 | 809 927.8 |
[1] | PéREZ-LOMBARD L , ORTIZ J , POUT C . A review on buildings energy consumption information[J]. Energy and Buildings, 2008,40(3): 394-398. |
[2] | WANG J Q , HUANG J J , FENG Z B ,et al. Occupant-density- detection based energy efficient ventilation system:prevention of infection transmission[J]. Energy and Buildings, 2021,240:110883. |
[3] | HOU J , XU P , LU X ,et al. Implementation of expansion planning in existing district energy system:a case study in China[J]. Applied Energy, 2018,211: 269-281. |
[4] | PANG Z H , O’NEILL Z , LI Y F ,et al. The role of sensitivity analysis in the building performance analysis:a critical review[J]. Energy and Buildings, 2020,209:109659. |
[5] | WANG J Q , HOU J , CHEN J P ,et al. Data mining approach for improving the optimal control of HVAC systems:an event-driven strategy[J]. Journal of Building Engineering, 2021,39:102246. |
[6] | MA Z J , WANG S W . Online fault detection and robust control of condenser cooling water systems in building central chiller plants[J]. Energy and Buildings, 2011,43(1): 153-165. |
[7] | YAO Y , LIAN Z W , HOU Z J ,et al. Optimal operation of a large cooling system based on an empirical model[J]. Applied Thermal Engineering, 2004,24(16): 2303-2321. |
[8] | HUANG S , ZUO W D , SOHN M D . Improved cooling tower control of legacy chiller plants by optimizing the condenser water set point[J]. Building and Environment, 2017,111: 33-46. |
[9] | ZHU N , SHAN K , WANG S W ,et al. An optimal control strategy with enhanced robustness for air-conditioning systems considering model and measurement uncertainties[J]. Energy and Buildings, 2013,67: 540-550. |
[10] | SUN Y J , WANG S W , HUANG G S . Chiller sequencing control with enhanced robustness for energy efficient operation[J]. Energy and Buildings, 2009,41(11): 1246-1255. |
[11] | LI Z W , HUANG G S , SUN Y J . Stochastic chiller sequencing control[J]. Energy and Buildings, 2014,84: 203-213. |
[12] | QIU S N , LI Z H , LI Z W ,et al. Model-free control method based on reinforcement learning for building cooling water systems:validation by measured data-based simulation[J]. Energy and Buildings, 2020,218:110055. |
[13] | BAGHAEE S , ULUSOY I . User comfort and energy efficiency in HVAC systems by Q-learning[C]// Proceedings of 2018 26th Signal Processing and Communications Applications Conference. Piscataway:IEEE Press, 2018: 1-4. |
[14] | FADDEL S , TIAN G Y , ZHOU Q ,et al. Data driven Q-learning for commercial HVAC control[C]// Proceedings of IEEE Southeast Con 2020. Piscataway:IEEE Press, 2020: 1-6. |
[15] | 刘朝阳, 穆朝絮, 孙长银 . 深度强化学习算法与应用研究现状综述[J]. 智能科学与技术学报, 2020,2(4): 314-326. |
LIU Z Y , MU C X , SUN C Y . An overview on algorithms and applications of deep reinforcement learning[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(4): 314-326. | |
[16] | 刘莹莹, 王占山 . 异构多智能体系统的输出同步:一个基于数据的强化学习方法[J]. 智能科学与技术学报, 2020,2(4): 394-400. |
LIU Y Y , WANG Z S . Output synchronization of heterogeneous multi-agent system:a reinforcement learning approach based on data[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(4): 394-400. | |
[17] | MNIH V , KAVUKCUOGLU K , SILVER D ,et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518(7540): 529-533. |
[18] | AHN K U , PARK C S . Application of deep Q-networks for model-free optimal control balancing between different HVAC systems[J]. Science and Technology for the Built Environment, 2020,26(1): 61-74. |
[19] | CHANG Y C . A novel energy conse11rvation method—optimal chiller loading[J]. Electric Power Systems Research, 2004,69(2/3): 221-226. |
[20] | LIAO Y D , SUN Y J , HUANG G S . Robustness analysis of chiller sequencing control[J]. Energy Conversion and Management, 2015,103: 180-190. |
[21] | ARDAKANI A J , ARDAKANI F F , HOSSEINIAN S H . A novel approach for optimal chiller loading using particle swarm optimization[J]. Energy and Buildings, 2008,40(12): 2177-2187. |
[22] | CHANG Y C , LIN J K , CHUANG M H . Optimal chiller loading by genetic algorithm for reducing energy consumption[J]. Energy and Buildings, 2005,37(2): 147-155. |
[23] | LEE W S , LIN L C . Optimal chiller loading by particle swarm algorithm for reducing energy consumption[J]. Applied Thermal Engineering, 2009,29(8/9): 1730-1734. |
[24] | QIU S N , LI Z H , LI Z W ,et al. Model-free optimal chiller loading method based on Q-learning[J]. Science and Technology for the Built Environment, 2020,26(8): 1100-1116. |
[25] | CRAWLEY D B , LAWRIE L K , WINKELMANN F C ,et al. EnergyPlus:creating a new-generation building energy simulation program[J]. Energy and Buildings, 2001,33(4): 319-331. |
[26] | ZHU D D , HONG T Z , YAN D ,et al. A detailed loads comparison of three building energy modeling programs:EnergyPlus,DeST and DOE-2.1E[J]. Building Simulation, 2013,6(3): 323-335. |
[27] | BENTON D J , BOWMAN C F , HYDEMAN M ,et al. An improved cooling tower algorithm for the CooiToolsTMsimulation model[C]// Proceedings of ASHRAE Annual Meeting.[S.l.:s.n.], 1999. |
[1] | Yuxiang SUN, Yihui PENG, Bin LI, Jiawei ZHOU, Xinlei ZHANG, Xianzhong ZHOU. Overview of intelligent game:enlightenment of game AI to combat deduction [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 157-173. |
[2] | Jiacheng LIU, Xiangwen ZHANG. TD3-based energy management strategy for hybrid energy storage system of electric vehicle [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 277-287. |
[3] | Pu FENG, Wenjun WU, Jie LUO, Xin YU, Yongkai TIAN. Emergence measurement of robot swarm intelligence based on swarm entropy [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(1): 65-74. |
[4] | Zhiqiang HU. The framework model on internal mechanism of big data intelligent command and control [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 101-109. |
[5] | Zhaoyang LIU, Chaoxu MU, Changyin SUN. An overview on algorithms and applications of deep reinforcement learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 314-326. |
[6] | Tao LI, Qinglai WEI. Intelligent heating temperature control system based on deep reinforcement learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 348-353. |
[7] | Rizhong WANG, Huiping LI, Di CUI, Demin XU. Depth control of autonomous underwater vehicle using deep reinforcement learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 354-360. |
[8] | Huiqiao FU, Kaiqiang TANG, Guizhou DENG, Xinpeng WANG, Chunlin CHEN. Motion planning for hexapod robot using deep reinforcement learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 361-371. |
[9] | Yu SHEN,Jinpeng HAN,Lingxi LI,Fei-Yue WANG. AI in game intelligence—from multi-role game to parallel game [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 205-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|