智能科学与技术学报 ›› 2019, Vol. 1 ›› Issue (2): 107-117.doi: 10.11959/j.issn.2096-6652.201904
• 常规论文 • 下一篇
康孟珍1,3,王秀娟1,2,华净1,3(),王浩宇3,4,王飞跃1,2
修回日期:
2019-03-12
出版日期:
2019-06-20
发布日期:
2019-09-09
作者简介:
康孟珍(1975- ),女,浙江宁波人,中国科学院自动化研究所副研究员,主要研究方向为平行农业和计算植物。|王秀娟(1982- ),女,内蒙古赤峰市人,中国科学院自动化研究所助理研究员,主要研究方向为平行农业和植物建模。|华净(1981- ),男,江苏常德人,中国科学院自动化研究所助理研究员,主要研究方向为植物生长建模、智慧农业、编程语言、分布式计算系统及计算机图形学。|王浩宇(1984- ),男,河北沧州人,中国科学院自动化研究所助理研究员,主要研究方向为植物生长建模、智慧农业、编程语言及信息系统。|王飞跃(1961- ),男,浙江东阳人,中国科学院自动化研究所研究员,主要研究方向为智能系统和复杂系统建模、分析与控制。
基金资助:
Mengzhen KANG1,3,Xiujuan WANG1,2,Jing HUA1,3(),Haoyu WANG3,4,Fei-Yue WANG1,2
Revised:
2019-03-12
Online:
2019-06-20
Published:
2019-09-09
Supported by:
摘要:
农业生产具有很强的不确定性、多样性、复杂性,其经营效益与自然条件、国家政策、市场环境息息相关。互联网时代的到来,给农业生产带来了新的挑战和机遇。总的来说,智慧农业是指利用信息技术,对农业生产—经营—管理—服务全产业链进行智能化控制,实现农业生产的优质、高效、安全和可控。在略述当前智慧农业信息感知、智能决策和决策实施三方面技术现状的基础之上,提出实现智慧农业智能决策之平行农业技术,以及如何以人工系统实现描述智能、以计算实验实现预测智能、以平行执行实现引导智能,并提出与农业企业资源计划、农业生产执行系统、农业生产过程控制系统相结合的构想。在当今大力发展农业规模化生产的背景下,为发展工业化的农业生产和经营提供了思路。
中图分类号:
康孟珍, 王秀娟, 华净, 等. 平行农业:迈向智慧农业的智能技术[J]. 智能科学与技术学报, 2019, 1(2): 107-117.
Mengzhen KANG, Xiujuan WANG, Jing HUA, et al. Parallel agriculture:intelligent technology toward smart agriculture[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(2): 107-117.
[22] | XU S W . Agricultural big data and monitoring and early warning of agricultural product[J]. Journal of Agricultural Science and Technology, 2014,16(5): 14-20. |
[23] | WANG F Y , ZHENG N , CAO D ,et al. Parallel driving in CPSS:a unified approach for transport automation and vehicle intelligence[J]. IEEE/CAA Journal of Automatica Sinica, 2017,4(4): 577-587. |
[24] | 吕宜生, 陈圆圆, 金峻臣 ,等. 平行交通:虚实互动的智能交通管理与控制[J]. 智能科学与技术学报, 2019,1(1): 21-33. |
LV Y S , CHEN Y Y , JIN J C ,et al. Parallel transportation:virtual-real interaction for intelligent traffic management and control[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 21-33. | |
[25] | 王飞跃, 王晓, 袁勇 ,等. 社会计算与计算社会:智慧社会的基础与必然[J]. 科学通报, 2015,60: 460-469. |
WANG F Y , WANG X , YUAN Y ,et al. Social computing and computational societies:the foundation and consequence of smart societies[J]. Chinese Science Bulletin, 2015,60: 460-469. | |
[26] | WANG F Y . The emergence of intelligent enterprises:from CPS to CPSS[J]. IEEE Intelligent Systems, 2010,25(4): 85-88. |
[27] | 王飞跃, 杨柳青, 胡晓娅 ,等. 平行网络与网络软件化:一种新颖的网络架构[J]. 中国科学:信息科学, 2017,47(7): 811-831. |
WANG F Y , YANG L Q , HU X Y ,et al. Parallel networks and network softwarization:a novel network architecture[J]. Scientia Sinica Informationis, 2017,47(7): 811-831. | |
[28] | 张俊, 王飞跃, 方舟 . 社会能源:从社会中获取能源[J]. 智能科学与技术学报, 2019,1(1): 7-20. |
ZHANG J , WANG F Y , FANG Z . Social energy:mining energy from the society[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 7-20. | |
[29] | 沈大勇, 王晓, 刘胜 . 平行装卸:迈向智慧物流的智能技术[J]. 智能科学与技术学报, 2019,1(1): 34-39. |
SHEN D Y , WANG X , LIU S . Parallel loading and unloading:smart technology toward intelligent logistics[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 34-39. | |
[30] | 王飞跃 . 关于复杂系统的建模、分析、控制和管理[J]. 复杂系统与复杂性科学, 2006,3(2): 26-34. |
WANG F Y . On the modeling,analysis,control and management of complex systems[J]. Complex Systems and Complexity Science, 2006,3(2): 26-34. | |
[31] | KANG M , WANG F Y . From parallel plants to smart plants:intelligent control and management for plant growth[J]. IEEE/CAA Journal of Automatica Sinica, 2017,4(2): 161-166. |
[32] | 王飞跃 . 系统工程的过去、现在和未来:系统工程与管理变革:从牛顿到默顿的升华[J]. 管理学家:实践版, 2013(10): 10-19. |
WANG F Y . The past,present and future of systems engineering:systems engineering and management transformation:paradigm shift from newton to merton[J]. Caijinjie(Guanlixuejia), 2013(10): 10-19. | |
[1] | 隋斌 . 大力发展智慧农业引领驱动农业现代化——在中国发展论坛暨第三届智慧农业创新发展国际研讨会上的主题发言[J]. 农业工程技术, 2016,36(36): 17-18. |
SUI B . Devoting major efforts to developing smart agriculture,leading and driving agricultural modernization[J]. Agricultural Engineering Technology, 2016,36(36): 17-18. | |
[33] | DE WIT C T . Photosynthesis of leaf canopies[J]. Agricultural Research Reports, 1965,663(663): 1-54. |
[34] | MEDINA-RUí C A , MERCADO-LUNA I A , SOTO-ZARAZúA M .et al. Mathematical modeling on tomato plants:a review[J]. African Journal of Agricultural Research, 2011,6(33): 6745-6749. |
[2] | 母金梅, 申志永 . 3S 技术在我国农业领域的应用[J]. 农业工程, 2011,1(2): 68-70. |
MU J M , SHEN Z Y . Application of 3S technique in agricultural areas in China[J]. Agricultural Engineering, 2011,1(2): 68-70. | |
[3] | KHANAL S , FULTON J , SHEARER S . An overview of current and potential applications of thermal remote sensing in precision agriculture[J]. Computers and Electronics in Agriculture, 2017,139: 22-32. |
[4] | 王浩宇, 华净, 陆浩 ,等. 农产品市场价格采集平台-JJFarmer[C]// 2016 年全国智能工程与农业信息化学术会议. 2016. |
[35] | RITCHIE J T , SINGH U , GODWIN D C ,et al. Cereal growth,development and yield[M]. Springer Netherlands, 1998: 79-98. |
[36] | MCCOWN R L , HAMMER G L , HARGREAVES J N G ,et al. APSIM:a novel software system for model development,model testing and simulation in agricultural systems research[J]. Agricultural Systems, 1996,50(3): 255-271. |
[4] | WANG H Y , HUA J , LU H ,et al. Collection platform of agricultural production prices-JJFarmer[C]// 2016 National Conference on Intelligent Engineering and Agricultural Information. 2016. |
[5] | WENG Y , WANG X , HUA J ,et al. IEEE Transactions on Computational Social Systems[J]. 2019,6(3): 547-553. |
[37] | YAN H , KANG M , DE REFFYE P ,et al. A dynamic,architectural plant model simulating resource‐dependent growth[J]. Annals of Botany, 2004,93(5): 591-602. |
[38] | VOS J , EVERS J B , BUCK-SORLIN G H ,et al. Functional-structural plant modelling:a new versatile tool in crop science[J]. Journal of Experimental Botany, 2010,61(8): 2101-2115. |
[6] | 陈锡康, 杨翠红 . 农业复杂巨系统的特点与全国粮食产量预测研究[J]. 系统工程理论与实践, 2002,6: 108-112. |
CHEN X K , YANG C H . Characteristic of agricultural complex giant system and national grain output prediction[J]. System Engineering Theory and Practice, 2002,6: 108-112. | |
[39] | 李树海, 马承伟, 张俊芳 ,等. 多层覆盖连栋温室热环境模型构建[J]. 农业工程学报, 2004,(3): 217-221. |
LI S H , MA C W , ZHANG J F ,et al. Thermal model of multi-span greenhouses with multi-layer covers[J]. Transactions of the CSAE, 2004(3): 217-221. | |
[7] | 高峰, 俞立, 张文安 ,等. 现代通信技术在设施农业中的应用综述[J]. 浙江林学院学报, 2009,26(5): 742-749. |
GAO F , YU L , ZHANG W A ,et al. Review on modern communication technology and its application to facility agriculture[J]. Journal of Zhejiang Forestry College, 2009,26(5): 742-749. | |
[40] | 杨文雄, 马承伟 . 不同覆盖材料对日光温室室内光环境的影响[J]. 农机化研究, 2016,(2): 145-148. |
YANG W X , MA C W . The effect of different covering materials on the indoor light environment in greenhouse[J]. Journal of Agricultural Mechanization Research, 2016,(2): 145-148. | |
[8] | 柏章容 . 现代通信技术在设施农业中的应用综述[J]. 农业与技术, 2017,37(17): 177-178. |
BO Z R . Review on the application of modern communication technologies in facility agriculture[J]. Agriculture and Technology, 2017,37(17): 177-178. | |
[41] | PATIL S L , TANTAU H J , SALOKHE V M . Modelling of tropical greenhouse temperature by auto regressive and neural network models[J]. Biosystems Engineering, 2008,99(3): 423-431. |
[42] | 陈雨青 . 夏季温室小气候的计算机模拟及预测研究[D]. 南京:南京农业大学, 2002. |
CHEN Y Q . Research on simulation and prediction of greenhouse microclimate in summer by computer[D]. Nanjing:Nanjing Agricultural University, 2002. | |
[43] | DANIEL J , ANDRéS P U , HéCTOR S . A survey of artificial neural network-based modeling in agroecology[M]. Soft Computing Applications in Industry,Prasad B,Springer Berlin Heidelberg,2008, 2008, 247-269. |
[44] | POUTEAU R , MEYER J , TAPUTUARAI R ,et al. Support vector machines to map rare and endangered native plants in Pacific islands forests[J]. Ecological Informatics, 2012(9): 37-46. |
[45] | GUTIéRREZ-ESTRADA J C , PULIDO-CALVO I , BILTON D T . Consistency of fuzzy rules in an ecological context[J]. Ecological Modeling, 2013,251: 187-198. |
[46] | FAN X , KANG M , HEUVELINK E ,et al. A knowledge-and-datadriven modeling approach for simulating plant growth:a case study on tomato growth[J]. Ecological Modeling, 2015,312: 363-373. |
[47] | KANG M Z , YANG L L , ZHANG B G ,et al. Correlation between dynamic tomato fruit-set and source-sink ratio:a common relationship for different plant densities and seasons?[J]. Annals of Botany, 2010,107(5): 805-815. |
[9] | ZHU C , WANG H , LIU X ,et al. A novel sensory data processing framework to integrate sensor networks with mobile cloud[J]. IEEE Systems Journal, 2016,10(3): 1125-1136. |
[10] | JAWAD H M , NORDIN R , GHARGHAN S K ,et al. Energy-efficient wireless sensor networks for precision agriculture:a review[J]. Sensors, 2017,17(8):1781. |
[48] | KANG M , HEUVELINK E , CARVALHO S M P ,et al. A virtual plant that responds to the environment like a real one:the case for chrysanthemum[J]. New Phytologist, 2012,195(2): 384-395. |
[49] | 郑邦友, 马蕴韬, 李保国 ,等. 基于三维模型评估全球变暗效应对水稻光合生产的影响[J]. 中国科学:地球科学, 2011,41(3): 386-393. |
[11] | 杨信延, 钱建平, 孙传恒 ,等. 农产品及食品质量安全追溯系统关键技术研究进展[J]. 农业机械学报, 2014,45(11): 212-222. |
YANG X Y , QIAN J P , SUN C H ,et al. Key technologies for establishment agricultural products and food quality safety traceability systems[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014,45(11): 212-222. | |
[49] | ZHENG B Y , MA Y D , LI B G ,et al. Assessment of the influence of global dimming on the photosynthetic production of rice based on three-dimensional modeling[J]. Science China Earth Sciences, 2011,41(3): 386-393. |
[50] | XU L , BUCK-SORLIN G , . Simulating genotype-phenotype interaction using extended functional-structural plant models:approaches,applications and potential pitfalls[C]// Crop Systems Biology,Struik X Y A P,Springer International Publishing Switzerland, 2016: 33-53. |
[12] | SUN C H , LI W Y , ZHOU C ,et al. Anti-counterfeit system for agricultural product origin labeling based on GPS data and encrypted Chinese-sensible code[J]. Computers & Electronics in Agriculture, 2013,92(1): 82-91. |
[13] | 李道亮, 杨昊 . 农业物联网技术研究进展与发展趋势分析[J]. 农业机械学报, 2018,1: 1-22. |
[51] | WU L , LE DIMET F X , DE REFFYE P ,et al. An optimal control methodology for plant growth-case study of a water supply problem of sunflower[J]. Mathematics and Computers in Simulation, 2012,82(5): 909-923. |
[52] | HUA J , WANG X , KANG M ,et al. Prediction of crop phenology – a component of parallel agriculture management[C]// 2017 Chinese Automation Congress,Jinan,Shandong:IEEE, 2017. |
[53] | 赵军, 王智敏, 王熙 ,等. 基于GPS的精准农业变量施肥系统及研究进展[J]. 2003. |
ZHAO J , WANG Z M , WANG X ,et al. Precision agricultural variable fertilization system based on GPS and its research progress[J]. 2003. | |
[13] | LI D L , YANG H . A state-of-the-art review for internet of things in agriculture[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018,1: 1-22. |
[14] | SANTOS L M R D , MICHELON P , ARENALES M N ,et al. Crop rotation scheduling with adjacency constraints[J]. Annals of operations research, 2011,190(1): 165-180. |
[54] | DOUCET A , FREITAS N , GORDON N . Sequential Monte Carlo methods in practice,first edition[M]. Springer Verlag, 2001. |
[55] | KANG M , CORPETTI T , HUA J ,et al. Remote sensing of biomass –principles and applications[M]. Rijeka: InTech Open Access Publisher,2012Press, 2012, 217-228. |
[15] | MICHALSKI R S , DAVIS J H , BISHT V S ,et al. PLANT/ds:an expert consulting system for the diagnosis of soybean diseases[C]// Ecai-82 European Conference on Artificial Intelligence. 1982. |
[16] | MCKINION J M , BAKER D N , WHISLER F D ,et al. Application of the GOSSYM/COMAX system to cotton crop management[J]. Agricultural Systems, 1989,31(1): 55-65. |
[56] | DE REFFYE P , JAEGER M . Modèles mathématiques du développement et de la croissance de l’architecture des plantes.Le cas du modèle GreenLab[M]. 2011. |
[57] | KANG M Z , FAN X R , HUA J ,et al. Managing traditional solar greenhouse with CPSS:a just-for-fit philosophy[J]. IEEE Transactions on Cybernetics, 2018,48(12): 3371-3380. |
[17] | XIONG F L , . Expert system for decision-making in complex environments[C]// 25th IEEE Conference on Decision and Control. 1986. |
[18] | 张小超, 胡小安, 苑严伟 . 精准农业智能变量作业装备研究开发[J]. 农业工程, 2011,1(3): 26-32. |
ZHANG X C , HU X A , YUAN Y W . Research and development of intelligent agricultural machinery on precision agriculture[J]. Agricultural Engineering, 2011,1(3): 26-32. | |
[58] | 袁勇, 周涛, 周傲英 ,等. 区块链技术:从数据智能到知识自动化[J]. 自动化学报, 2017,43(9): 1485-1490. |
YUAN Y , ZHOU T , ZHOU A Y ,et al. Blockchain technology:from data intelligence to knowledge automation[J]. Acta Automatica sinica, 2017,43(9): 1485-1490. | |
[19] | 周志艳, 臧英, 罗锡文 . 中国农业航空植保产业技术创新发展战略[J]. 农业工程学报, 2013,29(24): 1-10. |
ZHOU Z Y , ZANG Y , LUO X W . Technology innovation development strategy on agricultural aviation industry for plant protection in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(24): 1-10. | |
[59] | 王飞跃 . 软件定义的系统与知识自动化:从牛顿到默顿的平行升华[J]. 自动化学报, 2015,41(1): 1-8. |
WANG F Y . Software-defined systems and knowledge automation:a parallel paradigm shift from Newton to Merton[J]. Acta Automatica Sinica, 2015,41(1): 1-8. | |
[20] | 罗锡文, 廖娟, 胡炼 . 提高农业机械化水平促进农业可持续发展[J]. 农业工程学报, 2016,32(1): 1-11. |
LUO X W , LIAO J , HU L . Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(1): 1-11. | |
[60] | 王飞跃 . 指控 5.0:平行时代的智能指挥与控制[J]. 指挥与控制学报, 2015,1(1): 107-120. |
WANG F Y.CC 5 . 0:Intelligent command and control systems in the parallel age[J]. Journal of Command and Control, 2015,1(1): 107-120. | |
[21] | SCOTT N R , CHEN H , SCHOEN R . Sustainable global food supply[M]. Springer International Publishing, 2016. |
[22] | 许世卫 . 农业大数据与农产品监测预警[J]. 中国农业科技导报, 2014,16(5): 14-20. |
[61] | 金莹, 叶立润 . 兰州市市民对社区支持农业(CSA)模式选择意愿的实证分析[J]. 中国农学通报, 2015(7): 272-278. |
JIN Y , YE L R . Empirical analysis of the citizens’ willingness to select community supported agriculture mode (CSA) in Lanzhou City[J]. Chinese Agricultural Science Bulletin, 2015(7): 272-278. |
[1] | 康孟珍, 邱文忠, 陈自富, 王猛, 许沙沙, 王秀娟, 倪爱东, 蒋玉洁, 陈世超, DEREFFYE Philippe, 王飞跃. 平行圆明园:从数字孪生园林到元宇宙智慧遗址公园[J]. 智能科学与技术学报, 2022, 4(3): 301-307. |
[2] | 郭超, 鲁越, 王晓, 易达, 王虓, 王飞跃. 人机物CPSS智能融合的平行创作架构与关键技术研究[J]. 智能科学与技术学报, 2022, 4(3): 344-354. |
[3] | 栗仁武, 张凌霄, 高林, 李淳芃, 蒋浩. 基于点云的类级别物体姿态估计[J]. 智能科学与技术学报, 2022, 4(2): 246-254. |
[4] | 康孟珍, 王秀娟, 李冬, 王旭伟, 王浩宇, 樊梦涵, 许钰林, 王飞跃. 基于联邦学习的分布式农业组织[J]. 智能科学与技术学报, 2022, 4(2): 288-297. |
[5] | 李小双, 王晓, 杨林瑶, 田永林, 王雨桐, 张俊, 王飞跃. 元电网MetaGrid:基于平行电网的新一代智能电网的体系与架构[J]. 智能科学与技术学报, 2021, 3(4): 387-398. |
[6] | 李琳辉, 周彬, 任威威, 连静. 行人轨迹预测方法综述[J]. 智能科学与技术学报, 2021, 3(4): 399-411. |
[7] | 李亚玲, 杨林瑶, 葛俊, 覃缘琪, 王晓. 博弈5.0:基于平行系统和机器博弈的社会认知平行博弈[J]. 智能科学与技术学报, 2021, 3(4): 507-520. |
[8] | 王飞跃, 蒋怀光. 平行电池:智能生态化电池技术与服务体系的框架和流程[J]. 智能科学与技术学报, 2021, 3(4): 521-531. |
[9] | 李颖, 陈龙, 黄钊宏, 孙杨, 蔡国榕. 基于多尺度卷积神经网络特征融合的植株叶片检测技术[J]. 智能科学与技术学报, 2021, 3(3): 304-311. |
[10] | 田庆, 胡蓉, 李佐勇, 蔡远征, 余兆钗. 基于SE-YOLOv5s的绝缘子检测[J]. 智能科学与技术学报, 2021, 3(3): 312-321. |
[11] | 王春法, 王飞跃, 鲁越, 李华飙, 郭超. 平行博物馆:新时代博物馆运营的智能管理与控制[J]. 智能科学与技术学报, 2021, 3(2): 125-136. |
[12] | 刘文, 胡琨林, 李岩, 刘钊. 移动目标轨迹预测方法研究综述[J]. 智能科学与技术学报, 2021, 3(2): 149-160. |
[13] | 张阳, 胡月, 辛东嵘. 一种考虑时空关联的深度学习短时交通流预测方法[J]. 智能科学与技术学报, 2021, 3(2): 172-178. |
[14] | 吴宇震, 张俊, 高天露, 孙玉健, 刘金旭. 平行港口:智慧绿色时代下港口工业智联网新形态与体系结构[J]. 智能科学与技术学报, 2021, 3(2): 218-227. |
[15] | 刘栋军, 王宇涵, 凌文芬, 彭勇, 孔万增. 基于脑机协同智能的情绪识别[J]. 智能科学与技术学报, 2021, 3(1): 65-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|