智能科学与技术学报 ›› 2022, Vol. 4 ›› Issue (4): 461-476.doi: 10.11959/j.issn.2096-6652.202255
• 评论智能 • 下一篇
卢经纬1,2, 程相1,3, 王飞跃1,3
修回日期:
2022-11-18
出版日期:
2022-12-15
发布日期:
2022-12-01
作者简介:
卢经纬(1990- ),男,青岛智能产业技术研究院助理研究员,主要研究方向为最优控制、平行控制、自适应动态规划和深度强化学习基金资助:
Jingwei LU1,2, Xiang CHENG1,3, Fei-Yue WANG1,3
Revised:
2022-11-18
Online:
2022-12-15
Published:
2022-12-01
Supported by:
摘要:
随着基础理论和硬件计算能力的飞速发展,深度学习技术在众多领域取得了令人瞩目的成绩。作为描述客观物理世界的重要工具,长期以来微分方程是各领域研究人员关心的重点。近年来,深度学习和微分方程的结合逐渐成了研究的热点。由于深度学习能够从大量数据中高效地提取特征,微分方程能够反应客观的物理规律,因此二者的结合可以有效地提升深度学习的泛化性,同时增强深度学习的可解释性。首先,介绍了深度学习求解微分方程的基本问题。其次,介绍了两类深度学习求解微分方程的方法:数据驱动和物理知情方法。然后,讨论了微分方程深度学习求解方法在实际中的应用。与此同时,在充分调研的基础上提出了科学智能大模型——DeDAO(微分之道),以应对现有的挑战。最后,对微分方程深度学习求解方法进行了简要总结。
中图分类号:
卢经纬,程相,王飞跃. 求解微分方程的人工智能与深度学习方法:现状及展望[J]. 智能科学与技术学报, 2022, 4(4): 461-476.
Jingwei LU,Xiang CHENG,Fei-Yue WANG. Artificial intelligence and deep learning methods for solving differential equations: the state of the art and prospects[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 461-476.
[61] | 郑素佩, 林云云, 封建湖 ,等. 浅水波方程的粘性正则化 PINN 算法[J]. 计算物理, 2022: 1-15. |
ZHENG S P , LIN Y Y , FENG J H ,et al. Viscous regularization PINN algorithm for shallow water equations[J]. Chinese Journal of Computational Physics, 2022: 1-15. | |
[62] | GOSWAMI S , ANITESCU C , CHAKRABORTY S ,et al. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture[J]. Theoretical and Applied Fracture Mechanics, 2020,106. |
[63] | ZHANG E R , YIN M L , KARNIADAKIS G E . Physics-informed neural networks for nonhomogeneous material identification in elasticity imaging[J]. arXiv preprint, 2020,arXiv:2009.04525. |
[64] | BECK C , BECKER S , GROHS P ,et al. Solving the Kolmogorov PDE by means of deep learning[J]. Journal of Scientific Computing, 2021,88(3): 1-28. |
[65] | GLAU K , WUNDERLICH L . The deep parametric PDE method and applications to option pricing[J]. Applied Mathematics and Computation, 2022,432. |
[66] | BARMPARIS G D , TSIRONIS G P . Physics-informed machine learning for the COVID-19 pandemic:adherence to social distancing and short-term predictions for eight countries[J]. Quantitative Biology, 2022,10(2): 139. |
[67] | GRIMM V , HEINLEIN A , KLAWONN A ,et al. Estimating the time-dependent contact rate of SIR and SEIR models in mathematical epidemiology using physics-informed neural networks[J]. Electronic Transactions on Numerical Analysis, 2021,56: 1-27. |
[1] | ZILL D . A first course in differential equations with modeling applications[M]. Stamford: Cengage Learning, 2012. |
[2] | HART J K , MARTINEZ K . Environmental sensor networks:a revolution in the earth system science?[J]. Earth-Science Reviews, 2006,78(3/4): 177-191. |
[3] | THOMAS J . Numerical partial differential equations:finite difference methods[M]. New York: Springer Science & Business Media, 2013. |
[4] | DONEA J , HUERTA A . Finite element methods for flow problems[M]. Hoboken: John Wiley & Sons, 2003. |
[68] | CAVANAGH H , MOSBACH A , SCALLIET G ,et al. Physicsinformed deep learning characterizes morphodynamics of Asian soybean rust disease[J]. Nature Communications, 2021,12: 1-9. |
[69] | ZHANG S T , WU J R , WANG Y G ,et al. A physics-informed statistical learning framework for forecasting local suspended sediment concentrations in marine environment[J]. Water Research, 2022,218. |
[70] | GROSS M R , HYMAN J D , SRINIVASAN S ,et al. A physicsinformed machine learning workflow to forecast production in a fractured Marcellus shale reservoir[C]// Proceedings of the 9th Unconventional Resources Technology Conference. Tulsa:American Association of Petroleum Geologists, 2021. |
[71] | KASHINATH K , MUSTAFA M , ALBERT A ,et al. Physics-informed machine learning:case studies for weather and climate modelling[J]. Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences, 2021,379(2194). |
[72] | POMBO D V , RINCON M J , BACHER P ,et al. Assessing stacked physics-informed machine learning models for co-located wind-solar power forecasting[J]. Sustainable Energy,Grids and Networks, 2022,32. |
[73] | JHONG B C , LIN C Y , JHONG Y D ,et al. Assessing the effective spatial characteristics of input features through physics-informed machine learning models in inundation forecasting during typhoons[J]. Hydrological Sciences Journal, 2022,67(10): 1527-1545. |
[5] | FEIT M , FLECK J , STEIGER A . Solution of the Schr?dinger equation by a spectral method[J]. Journal of Computational Physics, 1982,47(3): 412-433. |
[6] | LIU G R , GUY T . An introduction to meshfree methods and their programming[M]. New York: Springer Science & Business Media, 2005. |
[74] | BUKHARI A H , RAJA M A Z , SHOAIB M ,et al. Fractional order Lorenz based physics informed SARFIMA-NARX model to monitor and mitigate megacities air pollution[J]. Chaos,Solitons & Fractals, 2022,161. |
[75] | RICE J L , XU W W , AUGUST A . Analyzing Koopman approaches to physics-informed machine learning for long-term sea-surface temper ature forecasting[J]. arXiv preprint, 2020,arXiv:2010.00399. |
[7] | LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015,521(7553): 436-444. |
[8] | SUTTON R S , BARTO A G . Reinforcement learning:an introduction[M]. Cambridge: MIT Press, 2018. |
[9] | 李涛, 魏庆来 . 基于深度强化学习的智能暖气温度控制系统[J]. 智能科学与技术学报, 2020,2(4): 348-353. |
LI T , WEI Q L . Intelligent heating temperature control system based on deep reinforcement learning[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(4): 348-353. | |
[10] | 覃缘琪, 季青原, 葛俊 ,等. 城市交通路网动态短时推理与精准预测研究[J]. 智能科学与技术学报, 2022,4(3): 380-395. |
QIN Y Q , JI Q Y , GE J ,et al. Short-term traffic state reasoning and precise prediction in urban networks[J]. Chinese Journal of Intelligent Science and Technology, 2022,4(3): 380-395. | |
[11] | 曾淦雄, 柯逍 . 基于 3D 卷积的图像序列特征提取与自注意力的车牌识别方法[J]. 智能科学与技术学报, 2021,3(3): 268-279. |
ZENG G X , KE X . 3D convolution-based image sequence feature extraction and self-attention for license plate recognition method[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(3): 268-279. | |
[76] | HORNIK K , STINCHCOMBE M , WHITE H . Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989,2(5): 359-366. |
[77] | WANG F Y . The emergence of intelligent enterprises:from CPS to CPSS[J]. IEEE Intelligent Systems, 2010,25(4): 85-88. |
[12] | 杜倩龙, 宗成庆, 苏克毅 . 利用上下文相似度增强词对齐效果的自然语言推理方法[J]. 智能科学与技术学报, 2020,2(1): 26-35. |
DU Q L , ZONG C Q , SU K Y . Enhancing alignment with context similarity for natural language inference[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(1): 26-35. | |
[13] | 洪依, 孙成立, 冷严 . 基于超轻量通道注意力的端对端语音增强方法[J]. 智能科学与技术学报, 2021,3(3): 351-358. |
HONG Y , SUN C L , LENG Y . End-to-end speech enhancement based on ultra-lightweight channel attention[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(3): 351-358. | |
[14] | SILVER D , SCHRITTWIESER J , SIMONYAN K ,et al. Mastering the game of Go without human knowledge[J]. Nature, 2017,550(7676): 354-359. |
[15] | JUMPER J , EVANS R , PRITZEL A ,et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021,596(7873): 583-589. |
[78] | 王飞跃 . 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004,19(5): 485-489,514. |
WANG F Y . Parallel system methods for management and control of complex systems[J]. Control and Decision, 2004,19(5): 485-489,514. | |
[79] | 王飞跃 . 平行控制与数字孪生:经典控制理论的回顾与重铸[J]. 智能科学与技术学报, 2020,2(3): 293-300. |
WANG F Y . Parallel control and digital twins:control theory revisited and reshaped[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(3): 293-300. | |
[16] | CIODARO T , DEVA D , DE SEIXAS J M ,et al. Online particle detection with neural networks based on topological calorimetry information[J]. Journal of Physics:Conference Series, 2012,368. |
[17] | HELMSTAEDTER M , BRIGGMAN K L , TURAGA S C ,et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina[J]. Nature, 2013,500(7461): 168-174. |
[80] | WANG F Y . The DAO to MetaControl for MetaSystems in metaverses:the system of parallel control systems for knowledge automation and control intelligence in CPSS[J]. IEEE/CAA Journal of Automatica Sinica, 2022,9(11): 1899-1908. |
[81] | WANG F Y . Shadow systems:a new concept for nested and embedded co-simulation for intelligent systems[R]. 1994. |
[18] | BOMMASANI R , HUDSON D A , ADELI E ,et al. On the opportunities and risks of foundation models[J]. arXiv preprint, 2021,arXiv:2108.07258. |
[19] | LI X , WANG Y T , YAN L ,et al. ParallelEye-CS:a new dataset of synthetic images for testing the visual intelligence of intelligent vehicles[J]. IEEE Transactions on Vehicular Technology, 2019,68(10): 9619-9631. |
[82] | WEI Q L , LI H Y , WANG F Y . Parallel control for continuous-time linear systems:a case study[J]. IEEE/CAA Journal of Automatica Sinica, 2020,7(4): 919-928. |
[83] | LU J W , WEI Q L , WANG F Y . Parallel control for optimal tracking via adaptive dynamic programming[J]. IEEE/CAA Journal of Automatica Sinica, 2020,7(6): 1662-1674. |
[20] | EVERINGHAM M , GOOL L , WILLIAMS C K I ,et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010,88(2): 303-338. |
[21] | KARNIADAKIS G E , KEVREKIDIS I G , LU L ,et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021,3(6): 422-440. |
[84] | LU J W , WEI Q L , WANG Z Y ,et al. Event-triggered optimal control for discrete-time multi-player non-zero-sum games using parallel control[J]. Information Sciences, 2022,584: 519-535. |
[85] | LU J W , WEI Q L , LIU Y J ,et al. Event-triggered optimal parallel tracking control for discrete-time nonlinear systems[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2022,52(6): 3772-3784. |
[22] | RAISSI M , PERDIKARIS P , KARNIADAKIS G E . Physics-informed neural networks:a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019,378: 686-707. |
[23] | 王飞跃, 王景美, 谢贻权 . 最佳格点集在最小二乘法中的应用[J]. 浙江大学学报(自然科学版), 1988,22(3): 33-43. |
[86] | LU J W , WEI Q L , ZHOU T M ,et al. Event-triggered near-optimal control for unknown discrete-time nonlinear systems using parallel control[J]. IEEE Transactions on Cybernetics, 2022. |
[87] | DEVLIN J , CHANG M W , LEE K ,et al. BERT:pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.[S.l.:s.n.], 2019: 4171-4186. |
[23] | WANG F Y , WANG J M , XIE Y Q . An application of good lattice points in least square method[J]. Journal of Zhejiang University (Natural Science), 1988,22(3): 33-43. |
[24] | 王飞跃, 谢贻权 . 最小二乘加权残值方法的速进算法[C]// 第三届全国加权残值法会议论文集. 成都:西南交通大学出版社, 1989: 312-316. |
[88] | BROWN T , MANN B , RYDER N ,et al. Language models are few-shot learners[C]// Proceedings of the Conference on Neural Information Processing Systems.[S.l.:s.n.], 2020: 1877-1901. |
[89] | RADFORD A , KIM J W , HALLACY C ,et al. Learning transferable visual models from natural language supervision[C]// Proceedings of the International Conference on Machine Learning.[S.l.:s.n.], 2021: 8748-8763. |
[24] | WANG F Y , XIE Y Q . Sequential algorithms for least square weighted residual methods[C]// Proceedings of the 3rd National Conference on Weighted Residual Methods. Chengdu:Southwest Jiaotong University Press, 1989: 312-316. |
[25] | LAGARIS I E , LIKAS A , FOTIADIS D I . Artificial neural networks for solving ordinary and partial differential equations[J]. IEEE Transactions on Neural Networks, 1998,9(5): 987-1000. |
[90] | ALAYRAC J B , DONAHUE J , LUC P ,et al. Flamingo:a visual language model for few-shot learning[J]. arXiv preprint, 2022,arXiv:2204.14198. |
[91] | SU B , DU D , YANG Z ,et al. A molecular multimodal foundation model associating molecule graphs with natural language[J]. arXiv preprint, 2022,arXiv:1810.05481. |
[26] | LU L , MENG X H , MAO Z P ,et al. DeepXDE:a deep learning library for solving differential equations[J]. SIAM Review, 2021,63(1): 208-228. |
[27] | WINOVICH N , RAMANI K , LIN G . ConvPDE-UQ:convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains[J]. Journal of Computational Physics, 2019,394: 263-279. |
[92] | XIE Z D , ZHANG Z , CAO Y ,et al. SimMIM:a simple framework for masked image modeling[C]// Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2022: 9643-9653. |
[93] | 王飞跃 . 平行管理:复杂性管理智能的生态科技与智慧管理之DAO[J]. 自动化学报, 2022,48(11): 2655-2669. |
[28] | LI Z J , MEIDANI K , FARIMANI A . Transformer for partial differential equations' operator learning[J]. arXiv preprint. 2022,arXiv:2205.13671. |
[29] | DONG B , JIANG Q T , SHEN Z W . Image restoration:wavelet frame shrinkage,nonlinear evolution PDEs,and beyond[J]. Multiscale Modeling & Simulation, 2017,15(1): 606-660. |
[93] | WANG F Y . Parallel management:the DAO to smart ecological technology for complexity management intelligence[J]. Acta Automatica Sinica, 2022,48(11): 2655-2669. |
[94] | SHAZEER N , MIRHOSEINI A , MAZIARZ K ,et al. Outrageously large neural networks:the sparsely-gated mixture-of-experts layer[C]// Proceedings of the International Conference on Learning Representations.[S.l.:s.n.], 2017. |
[30] | LONG Z C , LU Y P , DONG B . PDE-Net 2.0:learning PDEs from data with a numeric-symbolic hybrid deep network[J]. Journal of Computational Physics, 2019,399. |
[31] | LU L , JIN P Z , PANG G F ,et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021,3(3): 218-229. |
[32] | WANG S F , WANG H W , PERDIKARIS P . Improved architectures and training algorithms for deep operator networks[J]. Journal of Scientific Computing, 2022,92(2): 1-42. |
[33] | HAN J , JENTZEN A , E W . Solving high-dimensional partial differential equations using deep learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(34): 8505-8510. |
[34] | SIRIGNANO J , SPILIOPOULOS K . DGM:a deep learning algorithm for solving partial differential equations[J]. Journal of Computational Physics, 2018,375: 1339-1364. |
[35] | CHEN Z , CHURCHILL V , WU K L ,et al. Deep neural network modeling of unknown partial differential equations in nodal space[J]. Journal of Computational Physics, 2022,449. |
[36] | ZHA W S , ZHANG W , LI D L ,et al. Convolution-based model-solving method for three-dimensional,unsteady,partial differential equations[J]. Neural Computation, 2022,34(2): 518-540. |
[37] | MEADE A J , FERNANDEZ A A . Solution of nonlinear ordinary differential equations by feedforward neural networks[J]. Mathematical and Computer Modelling, 1994,20(9): 19-44. |
[38] | VAN MILLIGEN B P , TRIBALDOS V , JIMéNEZ J A , . Neural network differential equation and plasma equilibrium solver[J]. Physical Review Letters, 1995,75(20): 3594-3597. |
[39] | MAI-DUY N , TRAN-CONG T , . Mesh-free radial basis function network methods with domain decomposition for approximation of functions and numerical solution of Poisson’s equations[J]. Engineering Analysis with Boundary Elements, 2002,26(2): 133-156. |
[40] | REYNALDI A , LUKAS S , MARGARETHA H . Backpropagation and levenberg-marquardt algorithm for training finite element neural network[C]// Proceedings of 2012 6th UKSim/AMSS European Symposium on Computer Modeling and Simulation. Piscataway:IEEE Press, 2012: 89-94. |
[41] | JUMPER J , EVANS R , PRITZEL A ,et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021,596(7873): 583-589. |
[42] | RAISSI M , KARNIADAKIS G E . Hidden physics models:machine learning of nonlinear partial differential equations[J]. Journal of Computational Physics, 2018,357: 125-141. |
[43] | BAR-SINAI Y , HOYER S , HICKEY J ,et al. Learning data-driven discretizations for partial differential equations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(31): 15344-15349. |
[44] | PANG G F , LU L , KARNIADAKIS G E . fPINNs:fractional physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2019,41(4): A2603-A2626. |
[45] | GAO H , SUN L N , WANG J X . PhyGeoNet:physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain[J]. Journal of Computational Physics, 2021,428. |
[46] | ZHU Y H , ZABARAS N , KOUTSOURELAKIS P-S ,et al. Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data[J]. Journal of Computational Physics, 2019,394: 56-81. |
[47] | SUN L N , GAO H , PAN S W ,et al. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data[J]. Computer Methods in Applied Mechanics and Engineering, 2020,361. |
[48] | MENG X H , LI Z , ZHANG D K ,et al. PPINN:parareal physicsinformed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020,370. |
[49] | YANG L , MENG X H , KARNIADAKIS G E . B-PINNs:Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021,425. |
[50] | WANG Y Z , SUN H , SUN G Z . DSP-PIGAN:a precision-consistency machine learning algorithm for solving partial differential equations[C]// Proceedings of 2021 13th International Conference on Machine Learning and Computing.[S.l.:s.n.], 2021: 21-26. |
[51] | WANG S , WANG H , PERDIKARIS P . Learning the solution operator of parametric partial differential equations with physics-informed DeepONets[J]. Science Advances, 2021,7(40). |
[52] | PASZKE A , GROSS S , MASSA F ,et al. Pytorch:an imperative style,high-performance deep learning library[C]// Proceedings of Advances in Neural Information Processing Systems.[S.l.:s.n.], 2019. |
[53] | ABADI M , AGARWAL A , BARHAM P ,et al. Tensorflow:large-scale machine learning on heterogeneous distributed systems[J]. arXiv preprint, 2015,arXiv:1603.04467. |
[54] | 王昀卓 . 求解偏微分方程的神经网络方法[D]. 合肥:中国科学技术大学, 2021. |
WANG Y Z . Neural network for solving partial differential equations[D]. Hefei:University of Science and Technology of China, 2021. | |
[55] | HAN J H , NICA M , STINCHCOMBE A R . A derivative-free method for solving elliptic partial differential equations with deep neural networks[J]. Journal of Computational Physics, 2020,419. |
[56] | OSORIO J D , WANG Z , KARNIADAKIS G ,et al. Forecasting solarthermal systems performance under transient operation using a data-driven machine learning approach based on the deep operator network architecture[J]. Energy Conversion and Management, 2022,252. |
[95] | CHENG X , LU J , WANG F Y . Deep learning meets optimal latticesfor continuous traffic flow prediction[J]. International Journal of Intelligent Control and Systems, 2022,2(1): 7-12. |
[57] | FRANKLIN T S , SOUZA L S , FONTES R M ,et al. A physicsinformed neural networks (PINN) oriented approach to flow metering in oil wells:an ESP lifted oil well system as a case study[J]. Digital Chemical Engineering, 2022,5. |
[58] | SHI H J , MENG M Q H . Deep koopman operator with control for nonlinear systems[J]. IEEE Robotics and Automation Letters, 2022,7(3): 7700-7707. |
[59] | 张子龙, 潘秋景, 仉文岗 ,等. 基于物理信息神经网络的盾构隧道诱发地表沉降预测[J]. 工程力学, 2022,39: 1-14. |
ZHANG Z L , PAN Q J , ZHANG W G ,et al. Prediction of surface settlements induced by shield tunnelling using physics-informed neural networks[J]. Engineering Mechanics, 2022,39: 1-14. | |
[60] | 万鹏, 李迎光, 华家玘 ,等. 基于元学习和 PINN 的变工况刀具磨损精确预测方法[J]. 南京航空航天大学学报, 2022,54(3): 387-396. |
WAN P , LI Y G , HUA J Q ,et al. Accurate prediction method of tool wear under varying cutting conditions based on meta learning and PINN[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022,54(3): 387-396. |
[1] | 王飞跃, 缪青海, 张军平, 郑文博, 丁文文. 探讨AI for Science的影响与意义:现状与展望[J]. 智能科学与技术学报, 2023, 5(1): 1-6. |
[2] | 黄哲, 王永才, 李德英. 3D目标检测方法研究综述[J]. 智能科学与技术学报, 2023, 5(1): 7-31. |
[3] | 罗欣欢, 王奕璇, 李炜, 陈曦. 基于显著性信息的Fit CutMix数据增强算法在医学影像上的应用[J]. 智能科学与技术学报, 2023, 5(1): 58-68. |
[4] | 顾宙瑜, 於跃成, 者甜甜. Rapider-YOLOX:高效的轻量级目标检测网络[J]. 智能科学与技术学报, 2023, 5(1): 92-103. |
[5] | 张军欢, 朱正一, 蔡可玮. 人工智能与量化交易的课程建设[J]. 智能科学与技术学报, 2023, 5(1): 104-112. |
[6] | 田永林, 陈苑文, 杨静, 王雨桐, 王晓, 缪青海, 王子然, 王飞跃. 元宇宙与平行系统:发展现状、对比及展望[J]. 智能科学与技术学报, 2023, 5(1): 121-132. |
[7] | 丛晓峰, 桂杰, 章军. 基于视觉Transformer的多损失融合水下图像增强网络[J]. 智能科学与技术学报, 2022, 4(4): 522-532. |
[8] | 蔡莹皓, 杨华, 安璇, 王文硕, 杜沂东, 张嘉韬, 王志刚. 神经符号学及其应用研究[J]. 智能科学与技术学报, 2022, 4(4): 560-570. |
[9] | 张俊, 许沛东, 陈思远, 高天露, 戴宇欣, 张科, 赵杭, 高杰迈, 白昱阳, 李金星, 张浩然, 李湘, 陈玖香. 物理-数据-知识混合驱动的人机混合增强智能系统管控方法[J]. 智能科学与技术学报, 2022, 4(4): 571-583. |
[10] | 陈妍, 罗雪琴, 梁伟, 谢永芳. 基于情感信息融合注意力机制的抑郁症识别[J]. 智能科学与技术学报, 2022, 4(4): 600-609. |
[11] | 张永强, 宋美霖, 刘天虎, 满梦华. 混合骨骼特征的三帧间差分手势识别方法研究[J]. 智能科学与技术学报, 2022, 4(4): 592-599. |
[12] | 武强, 季雪庭, 吕琳媛. 元宇宙中的人工智能技术与应用[J]. 智能科学与技术学报, 2022, 4(3): 324-334. |
[13] | 赖文柱, 陈德旺, 何振峰, 邓新国, GIUSEPPE CARLO Marano. 地铁列车驾驶技术发展综述:从人工驾驶到智能无人驾驶[J]. 智能科学与技术学报, 2022, 4(3): 335-343. |
[14] | 覃缘琪, 季青原, 葛俊, 戴星原, 陈圆圆, 王晓. 城市交通路网动态短时推理与精准预测研究[J]. 智能科学与技术学报, 2022, 4(3): 380-395. |
[15] | 栗仁武, 张凌霄, 高林, 李淳芃, 蒋浩. 基于点云的类级别物体姿态估计[J]. 智能科学与技术学报, 2022, 4(2): 246-254. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|