智能科学与技术学报 ›› 2021, Vol. 3 ›› Issue (4): 399-411.doi: 10.11959/j.issn.2096-6652.202140

• 综述与展望 • 上一篇    下一篇

行人轨迹预测方法综述

李琳辉1,2, 周彬1, 任威威1, 连静1,2   

  1. 1 大连理工大学汽车工程学院,辽宁 大连 116024
    2 大连理工大学工业装备结构分析国家重点实验室,辽宁 大连 116024
  • 修回日期:2020-08-28 出版日期:2021-12-15 发布日期:2021-12-01
  • 作者简介:李琳辉(1981- ),男,博士,大连理工大学汽车工程学院副教授,主要研究方向为智能车辆环境感知、规划决策与导航控制等
    周彬(1997- ),男,大连理工大学汽车工程学院硕士生,主要研究方向为智能车辆规划决策、轨迹预测等
    任威威(1996- ),男,大连理工大学汽车工程学院硕士生,主要研究方向为智能车辆规划决策、轨迹预测等
    连静(1980- ),女,博士,大连理工大学汽车工程学院副教授,主要研究方向为新能源汽车智能化、轨迹预测等
  • 基金资助:
    国家自然科学基金资助项目(51775082);国家自然科学基金资助项目(61976039);中央高校基本科研业务费专项资金资助项目(DUT19LAB36);中央高校基本科研业务费专项资金资助项目(DUT20GJ207);大连市科技创新基金资助项目(2018J12GX061)

Review of pedestrian trajectory prediction methods

Linhui LI1,2, Bin ZHOU1, Weiwei REN1, Jing LIAN1,2   

  1. 1 School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China
    2 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
  • Revised:2020-08-28 Online:2021-12-15 Published:2021-12-01
  • Supported by:
    The National Natural Science Foundation of China(51775082);The National Natural Science Foundation of China(61976039);The China Fundamental Research Funds for the Central Universities(DUT19LAB36);The China Fundamental Research Funds for the Central Universities(DUT20GJ207);Science and Technology Innovation Fund of Dalian(2018J12GX061)

摘要:

随着深度学习技术的突破和大型数据集的提出,行人轨迹预测的准确度已经成为人工智能领域的研究热点之一。主要对行人轨迹预测的技术分类和研究现状进行详细的综述。根据模型建模方式的不同,将现有方法分为基于浅层学习的轨迹预测方法和基于深度学习的轨迹预测方法,分析了每类方法中具有代表性的算法的效果及优缺点,归纳了当前主流的轨迹预测公开数据集,并在数据集中对比了主流轨迹预测方法的性能,最后对轨迹预测技术面临的挑战与发展趋势进行了展望。

关键词: 轨迹预测, 深度学习, 序列决策

Abstract:

With the breakthrough of deep learning technology and the proposal of large data sets, the accuracy of pedestrian trajectory prediction has become one of the research hotspots in the field of artificial intelligence.The technical classification and research status of pedestrian trajectory prediction were mainly reviewed.According to the different modeling methods, the existing methods were divided into shallow learning and deep learning based trajectory prediction algorithms, the advantages and disadvantages of representative algorithms in each type of method were analyzed and introduced.Then, the current mainstream public data sets were summarized, and the performance of mainstream trajectory prediction methods based on the data sets was compared.Finally, the challenges faced by the trajectory prediction technology and the development direction of future work were prospected.

Key words: trajectory prediction, deep learning, sequence decision

中图分类号: 

No Suggested Reading articles found!