Chinese Journal on Internet of Things ›› 2022, Vol. 6 ›› Issue (3): 1-13.doi: 10.11959/j.issn.2096-3750.2022.00278
• Topic: IoT and Wireless Optical Communication • Next Articles
Zaichen ZHANG1,2,3, Xiaohu YOU1,2,3, Jian DANG1,2,3, Liang WU1,2,3, Bingcheng ZHU1,2,3, Ji CHEN1,2, Lei WANG1,2,3
Revised:
2022-06-30
Online:
2022-08-05
Published:
2022-08-08
Supported by:
CLC Number:
Zaichen ZHANG, Xiaohu YOU, Jian DANG, Liang WU, Bingcheng ZHU, Ji CHEN, Lei WANG. Optical wireless communication and internet of things[J]. Chinese Journal on Internet of Things, 2022, 6(3): 1-13.
[1] | AYYASH M , ELGALA H , KHREISHAH A ,et al. Coexistence of WiFi and LiFi toward 5G,concepts,opportunities,and challenges[J]. IEEE Communications Magazine, 2016,54(2): 64-71. |
[2] | BOR M , VIDLER J , ROEDIG U ,et al. LoRa for the internet of things[EB]. 2016. |
[3] | ERGEN S C . ZigBee/IEEE 802.15.4 Summary[J]. UC Berkeley, 2004,10(17): 11. |
[4] | YANG J , SONG L , KOEPPE A . LTE field performance for IoT applications[C]// Proceedings of 2016 IEEE 84th Vehicular Technology Conference. Piscataway,IEEE Press, 2016: 1-5. |
[5] | 3GPP. Overview of 3GPP Release 8[EB]. 2014. |
[6] | NGUYEN D C , DING M , PATHIRANA P N ,et al. 6G internet of things,a comprehensive survey[J]. IEEE Internet of Things Journal, 2022,9(1): 359-383. |
[7] | ZHANG L , LIANG Y C , NIYATO D . 6G Visions,mobile ultra-broadband,super Internet-of-things,and artificial intelligence[J]. China Communications, 2019,16(8): 1-14. |
[8] | KESHAV S , SHUI Y , DINH N ,et al. A tutorial on next generation heterogeneous IoT networks and node authentication[J]. IEEE Internet of Things Magazine, 2021,4: 120-126. |
[9] | KOMINE T , NAKAGAWA M . Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 2004,50(1): 100-107. |
[10] | PANG G , KWAN T , CHAN C H ,et al. LED traffic light as a communications device[C]// Proceedings of Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat.No.99TH8383). Piscataway,IEEE Press, 1999: 788-793. |
[11] | KARUNATILAKA D , ZAFAR F , KALAVALLY V ,et al. LED based indoor visible light communications,state of the art[J]. IEEE Communications Surveys & Tutorials, 2015,17(3): 1649-1678. |
[12] | JUNGNICKEL V . Optical wireless in 5G[EB]. 2016. |
[13] | 郑运强, 刘欢, 孟佳成 ,等. 空基激光通信研究进展和趋势以及关键技术[J]. 红外与激光工程, 1-15. |
ZHENG Y Q , LIU H , MENG J C ,et al. Research progress,trends and key technologies of space-based laser communication[J]. Infrared and Laser Engineering: 1-15. | |
[14] | YAN L S , WANG F , WU W ,et al. Current status and key technologies of unmanned aerial vehicle laser communication payloads[J]. Laser &Optoelectronics Progress, 2016,53(8): 080005. |
[15] | 李学良 . 大气激光通信数字相干探测关键技术研究[D]. 北京:中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018. |
LI X L . Researches on several key technologies for free space optical communication based on digital coherent detection[D]. Beijing,Institute of Physics,Chinese Academy of Sciences, 2018. | |
[16] | WANG K , YUAN Z S , WONG E ,et al. Experimental demonstration of indoor infrared optical wireless communications with a silicon photonic integrated circuit[J]. Journal of Lightwave Technology, 2019,37(2): 619-626. |
[17] | IGA K . Surface-emitting laser-its birth and generation of new optoelectronics field[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000,6(6): 1201-1215. |
[18] | LIU A J , WOLF P , LOTT J A ,et al. Vertical-cavity surface-emitting lasers for data communication and sensing[J]. Photonics Research, 2019,7(2): 121. |
[19] | AKAISHI A , TAKAHASHI T , FUJINO Y ,et al. Development of optically controlled beam-forming network[J]. IEICE Transactions on Communications, 2012,E95.B(11): 3404-3411. |
[20] | ZHAO J . A survey of intelligent reflecting surfaces (IRSs),towards 6G wireless communication networks[EB]. 2019,arXiv,1907.04789. |
[21] | 姚建文, 王楠 . 智能反射面,大有前景的 6G 技术[J]. 电信快报, 2020,(7): 8-13. |
YAO J W , WANG N . Intelligent reflecting surface,a promising technique for 6G[J]. Telecommunications Information, 2020,(7): 8-13. | |
[22] | CHEN P , WEI B Y , HU W ,et al. Liquid-crystal-mediated geometric phase,from transmissive to broadband reflective planar optics[J]. Advanced Materials, 2020,32(27): 1903665. |
[23] | HU W , CHEN P , LU Y Q . Photoinduced liquid crystal domain engineering for optical field control,preparation,properties,and applications[J]. Photoactive Functional Soft Materials,Preparation,Properties,and Applications, 2019: 361-387. |
[24] | TAO J , YOU Q , LI Z L ,et al. Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications[J]. Advanced Materials, 2022,34(6): 2106080. |
[25] | FENG F , WHITE I H , WILKINSON T D . Holographic beam steering a directly modulated two-electrode high brightness tapered laser diode for optical wireless communications[C]// Proceedings of Asia Communications and Photonics Conference.Washington,D.C. ,OSA, 2012: 1-3. |
[26] | XU D M , TAN G J , WU S T . Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal[J]. Optics Express, 2015,23(9): 12274-12285. |
[27] | CHANG Q B , CHEN W S , LIU J K ,et al. Development of a novel two-DOF piezo-driven fast steering mirror with high stiffness and good decoupling characteristic[J]. Mechanical Systems and Signal Processing, 2021159,107851 |
[28] | 王福超, 王昱棠, 田大鹏 . 音圈快速反射镜的完全跟踪控制[J]. 光学精密工程, 2020,28(9): 1997-2006. |
WANG F C , WANG Y T , TIAN D P . Perfect tracking control for fast-steering mirror driven by voice coil motor[J]. Optics and Precision Engineering, 2020,28(9): 1997-2006. | |
[29] | 岳冰, 杨文淑, 傅承毓 . 空间光通信中的快速倾斜镜精跟踪实验系统[J]. 光电工程, 2002,29(3): 35-38,42. |
YUE B , YANG W S , FU C Y . Experiments on precision tracking system with a fast steering mirror in space laser communication[J]. Opto-Electronic Engineering, 2002,29(3): 35-38,42. | |
[30] | BRANDL P , SCHIDL S , POLZER A ,et al. Optical wireless communication with adaptive focus and MEMS-based beam steering[J]. IEEE Photonics Technology Letters, 2013,25(15): 1428-1431. |
[31] | CHU P B , LEE S S , PARK S . MEMS,the path to large optical crossconnects[J]. IEEE Communications Magazine, 2002,40(3): 80-87. |
[32] | BRANDL P , SCHIDL S , POLZER A ,et al. Optical wireless communication with adaptive focus and MEMS-based beam steering[J]. IEEE Photonics Technology Letters, 2013,25(15): 1428-1431. |
[33] | SARBAZI E , UYSAL M , ABDALLAH M ,et al. Indoor channel modelling and characterization for visible light communications[C]// Proceedings of 2014 16th International Conference on Transparent Optical Networks (ICTON). Piscataway,IEEE Press, 2014: 1-4. |
[34] | MIRAMIRKHANI F , UYSAL M , PANAYIRCI E . Novel channel models for visible light communications[C]// SPIE OPTO.Proc SPIE 9387,Broadband Access Communication Technologies IX,[S.l.:s.n.], 2015,9387: 150-162. |
[35] | KAHN J M , BARRY J R . Wireless infrared communications[J]. Proceedings of the IEEE, 1997,85(2): 265-298. |
[36] | CARRUTHERS J B , KANNAN P . Iterative site-based modeling for wireless infrared channels[J]. IEEE Transactions on Antennas and Propagation, 2002,50(5): 759-765. |
[37] | WU D , GHASSEMLOOY Z , LE MINH H ,et al. Optimisation of Lambertian order for indoor non-directed optical wireless communication[C]// Proceedings of 2012 1st IEEE International Conference on Communications in China Workshops. Piscataway,IEEE Press, 2012: 43-48. |
[38] | AL-KINANI A , WANG C X , HAAS H ,et al. Characterization and modeling of visible light communication channels[C]// Proceedings of 2016 IEEE 83rd Vehicular Technology Conference. Piscataway,IEEE Press, 2016: 1-5. |
[39] | WANG J , AL-KINANI A , ZHANG W S ,et al. A general channel model for visible light communications in underground mines[J]. China Communications, 2018,15(9): 95-105. |
[40] | DAVIS J , TANGO W . Measurement of the atmospheric coherence time[J]. Publications of the Astronomical Society of the Pacific, 1996,108,456. |
[41] | AL-HABASH A , ANDREWS L C , PHILLIPS R L . Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Optical Engineering, 2001,40: 1554-1562. |
[42] | ZENG Z Q , FU S , ZHANG H H ,et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2017,19(1): 204-238. |
[43] | COCHENOUR B M , MULLEN L J , LAUX A E . Characterization of the beam-spread function for underwater wireless optical communications links[J]. IEEE Journal of Oceanic Engineering, 2008,33(4): 513-521. |
[44] | YANG X Q , TONG Z J , DAI Y Z ,et al. 100 m full-duplex underwater wireless optical communication based on blue and green lasers and high sensitivity detectors[J]. Optics Communications, 2021,498:127261. |
[45] | GONZáLEZ O , RABADáN J , PéREZ-JIMéNEZ R ,et al. Adaptive OFDM system for communications over the indoor wireless optical channel[J]. IEE Proceedings – Optoelectronics, 2006,153(4): 139-144. |
[46] | WU L , ZHANG Z C , DANG J ,et al. Adaptive modulation schemes for visible light communications[J]. Journal of Lightwave Technology, 2015,33(1): 117-125. |
[47] | HUANG X , YANG F , SONG J ,et al. Subcarrier and power allocations for enhanced ADO-OFDM with dimming control[C]// Proceedings of ICC 2019 – 2019 IEEE International Conference on Communications. Piscataway,IEEE Press, 2019: 1-6. |
[48] | DANG J , ZHANG Z C , WU L . Improving the power efficiency of enhanced unipolar OFDM for optical wireless communication[J]. Electronics Letters, 2015,51(21): 1681-1683. |
[49] | SUN Y Q , YANG F , GAO J N . Comparison of hybrid optical modulation schemes for visible light communication[J]. IEEE Photonics Journal, 2017,9(3): 1-13. |
[50] | TELATAR E . Capacity of multi-antenna Gaussian channels[J]. European Transactions on Telecommunications, 1999,10(6): 585-595. |
[51] | PAULRAAJ A , ROHITA P , NABARR ,et al. Introduction to space-time wireless communications[M]. Cambridge,Cambridge university press, 2003. |
[52] | BIGLIERI E , CALDERBANK R , CONSTANTINIDES A ,et al. MIMO wireless communications[M]. Cambridge,Cambridge University Press, 2007. |
[53] | WU L , ZHANG Z , LIU H . Modulation scheme based on precoder matrix for MIMO optical wireless communication systems[J]. IEEE Communications Letters, 2012,16(9): 1516-1519. |
[54] | WANG C X , HAIDER F , GAO X ,et al. Cellular architecture and key technologies for 5G wireless communication networks[J]. IEEE Communications Magazine, 2014,52(2): 122-130. |
[55] | JOVICIC A , LI J Y , RICHARDSON T . Visible light communication:opportunities,challenges and the path to market[J]. IEEE Communications Magazine, 2013,51(12): 26-32. |
[56] | DANG J , WU M T , WU L ,et al. Transceiver design for MIMO DCO-OFDM in visible light communication[M]// Visible Light Communications. Rijeka,InTech, 2017. |
[57] | LI B L , WANG J H , ZHANG R ,et al. Multiuser MISO transceiver design for indoor downlink visible light communication under per-LED optical power constraints[J]. IEEE Photonics Journal, 2015,7(4): 1-15. |
[58] | HUANG N , WANG X D , CHEN M . Transceiver design for MIMO VLC systems with integer-forcing receivers[J]. IEEE Journal on Selected Areas in Communications, 2018,36(1): 66-77. |
[59] | MESLEH R Y , HAAS H , SINANOVIC S ,et al. Spatial modulation[J]. IEEE TransactionsonVehicular Technology, 2008,57(4): 2228-2241. |
[60] | FATH T , HAAS H . Performance comparison of MIMO techniques for optical wireless communications in indoor environments[J]. IEEE Transactions on Communications, 2013,61(2): 733-742. |
[61] | POPOOLA W O , POVES E , HAAS H . Spatial pulse position modulation for optical communications[J]. Journal of Lightwave Technology, 2012,30(18): 2948-2954. |
[62] | OLANREWAJU H G , POPOOLA W O . Effect of synchronization error on optical spatial modulation[J]. IEEE Transactions on Communications, 2017,65(12): 5362-5374. |
[63] | MESLEH R , ELGALA H , HAAS H . Optical spatial modulation[J]. Journal of Optical Communications and Networking, 2011,3(3): 234. |
[64] | WU L , CHENG J L , ZHANG Z C ,et al. Low-complexity spatial modulation for IM/DD optical wireless communications[J]. IEEE Photonics Technology Letters, 2019,31(6): 475-478. |
[65] | WU L , SHEN Y T , ZHANG Z C ,et al. Receiver algorithms for single-carrier OSM based high-rate indoor visible light communications[J]. IEEE Transactions on Wireless Communications, 2020,19(2): 1113-1126. |
[66] | OLANREWAJU H G , THOMPSON J , POPOOLA W O . Performance of optical spatial modulation in indoor multipath channel[J]. IEEE Transactions on Wireless Communications, 2018,17(9): 6042-6052. |
[67] | ZENG L B , O’BRIEN D C ,, MINH H L ,et al. High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting[J]. IEEE Journal on Selected Areas in Communications, 2009,27(9): 1654-1662. |
[68] | MONDAL R K , SAHA N , JANG Y M . Performance enhancement of MIMO based visible light communication[C]// Proceedings of 2013 International Conference on Electrical Information and Communication Technology (EICT). Piscataway,IEEE Press, 2014: 1-5. |
[69] | WANG C F , LI G Q , HU F C ,et al. Visible light communication for Vehicle to Everything beyond 1 Gb/s based on an LED car headlight and a 2 × 2 PIN array[J]. Chinese Optics Letters, 2020,18(11): 110602. |
[70] | KAZEMI H , SARBAZI E , SOLTANI M D ,et al. A Tb/s indoor MIMO optical wireless backhaul system using VCSEL arrays[J]. IEEE Transactions on Communications, 2022,70(6): 3995-4012. |
[71] | SUN C , GAO X Q , WANG J H ,et al. Beam domain massive MIMO for optical wireless communications with transmit lens[J]. IEEE Transactions on Communications, 2019,67(3): 2188-2202. |
[72] | YOU Q , LI C , XIAO X ,et al. Programmable 1.47 bit/s (92 Gb/s x 16) optical wireless broadcasting system empowered by a single spatial light modulator and a modified RSS algorithm[J]. Optics Express, 2021,29(13): 19373-19383. |
[73] | GLUSHKO B , SHAR A , MEDINA M ,et al. MEMS-based tracking for an indoor optical wireless communication bidirectional link[J]. IEEE Photonics Technology Letters, 2016,28(5): 550-553. |
[74] | ZHANG K H , ZHU B C , ZHANG Z C ,et al. Tracking system for fast moving nodes in optical mobile communication and the design rules[J]. IEEE Transactions on Wireless Communications, 2021,20(4): 2716-2728. |
[75] | WANG H B , ZHANG Z C , ZHU B C ,et al. Performance analysis of multi-branch reconfigurable intelligent surfaces-assisted optical wireless communication system in environment with obstacles[J]. IEEE Transactions on Vehicular Technology, 2021,70(10): 9986-10001. |
[76] | NAKAJIMA M , HARUYAMA S . New indoor navigation system for visually impaired people using visible light communication[J]. EURASIP Journal on Wireless Communications and Networking,2013, 2013,37. |
[77] | ARMSTRONG J , SEKERCIOGLU Y A , NEILD A . Visible light positioning,a roadmap for international standardization[J]. IEEE Communications Magazine, 2013,51(12): 68-73. |
[78] | LV H C , FENG L H , YANG A Y ,et al. High accuracy VLC indoor positioning system with differential detection[J]. IEEE Photonics Journal, 2017,9(3): 1-13. |
[79] | FANG J B , YANG Z , LONG S ,et al. High-speed indoor navigation system based on visible light and mobile phone[J]. IEEE Photonics Journal, 2017,9(2): 1-11. |
[80] | KIM J Y , YANG S H , SON Y H ,et al. High-resolution indoor positioning using light emitting diode visible light and camera image sensor[J]. IET Optoelectronics, 2016,10(5): 184-192. |
[81] | ZHU B C , CHENG J L , WANG Y J ,et al. Three-dimensional VLC positioning based on angle difference of arrival with arbitrary tilting angle of receiver[J]. IEEE Journal on Selected Areas in Communications, 2018,36(1): 8-22. |
[82] | VONGKULBHISAL J , CHANTARAMOLEE B , ZHAO Y ,et al. A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes[J]. Microwave and Optical Technology Letters, 2012,54(5): 1218-1227. |
[83] | KONINGS D , FAULKNER N , ALAM F ,et al. Field light,device-free indoor human localization using passive visible light positioning and artificial potential fields[J]. IEEE Sensors Journal, 2020,20(2): 1054-1066. |
[84] | CHEN Y R , GUAN W P , LI J Y ,et al. Indoor real-time 3-D visible light positioning system using fingerprinting and extreme learning machine[J]. IEEE Access, 2020(8): 13875-13886. |
[85] | 中国移动通信研究院. 下一代物联网发展构想白皮书[R]. 2021. |
China Mobile Communication Research Institute. Development conception of next generation internet of things white paper[R]. 2021. | |
[86] | PERAHIA E , GONG M X . Gigabit wireless LANs[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2011,15(3): 23-33. |
[87] | DAVISON A J , REID I D , MOLTON N D ,et al. MonoSLAM:real-time single camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(6): 1052-1067. |
[88] | KIM B W , JUNG S Y . Vehicle positioning scheme using V2V and V2I visible light communications[C]// Proceedings of 2016 IEEE 83rd Vehicular Technology Conference. Piscataway,IEEE Press, 2016: 1-5. |
[89] | SCHMUCK P , CHLI M . Multi-UAV collaborative monocular SLAM[C]// Proceedings of 2017 IEEE International Conference on Robotics and Automation. Piscataway,IEEE Press, 2017: 3863-3870. |
[90] | 周治国, 曹江微, 邸顺帆 . 3D激光雷达SLAM算法综述[J]. 仪器仪表学报, 2021,42(9): 13-27. |
ZHOU Z G , CAO J W , DI S F . Overview of 3D lidar SLAM algorithms[J]. Chinese Journal of Scientific Instrument, 2021,42(9): 13-27. | |
[91] | ZHANG W , KAVEHRAD M . Comparison of VLC-based indoor positioning techniques[C]// SPIE OPTO.Proc SPIE 8645,Broadband Access Communication Technologies VII,SanFrancisco,California,USA. 2013, 8645: 152-157. |
[92] | TRAN H Q , HA C . Fingerprint-based indoor positioning system using visible light communication—A novel method for multipath reflections[J]. Electronics, 2019,8(1): 63. |
[93] | LIN B J , TANG X , GHASSEMLOOY Z ,et al. Experimental demonstration of an indoor VLC positioning system based on OFDMA[J]. IEEE Photonics Journal, 2017,9(2): 1-9. |
[94] | 周玮阳, 金科 . 无人机远程激光充电技术的现状和发展[J]. 南京航空航天大学学报, 2013,45(6): 784-791. |
ZHOU W Y , JIN K . Status and trends of laser powered unmanned aerial vehicles[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013,45(6): 784-791. | |
[95] | GEISZ J F , FRANCE R M , SCHULTE K L ,et al. [J]. Six-junction III–V solar cells with 47.1% conversion efficiency under 143?Suns concentration, 2020,5(4): 326-335. |
[96] | JIN K , ZHOU W Y . Wireless laser power transmission,a review of recent progress[J]. IEEE Transactions on Power Electronics, 2019,34(4): 3842-3859. |
[97] | TURAN B , GURBILEK G , UYRUS A ,et al. Vehicular VLC frequency domain channel sounding and characterization[C]// Proceedings of 2018 IEEE Vehicular Networking Conference. Piscataway,IEEE Press, 2018: 1-8. |
[98] | ZHANG Z C , WU L , DANG J ,et al. Optical mobile communications:principles and challenges[C]// Proceedings of 2017 26th Wireless and Optical Communication Conference (WOCC). Piscataway,IEEE Press, 2017: 1-4. |
[99] | ZHANG Z C , DANG J , WU L ,et al. Optical mobile communications:principles,implementation,and performance analysis[J]. IEEE Transactions on Vehicular Technology, 2019,68(1): 471-482. |
[100] | GAO J J , DANG J , ZHANG Z C ,et al. Rate analysis of intensity modulated broadcast optical mobile communication system with user mobility[J]. IEEE Photonics Journal, 2020,12(5): 1-12. |
[101] | DANG J , GAO J J , ZHANG Z C ,et al. Performance of optical mobile communications with user mobility and multiple light sources[J]. Wireless Communications and Mobile Computing,2021, 2021:5573946. |
[102] | 重磅发布!2021中国光学领域十大社会影响力事件[EB]. 2021. |
Heavy release! 2021 top ten social influence events in China’s optical field[EB]. 2021. |
[1] | Jing WU, Sheng LI, Jing ZHANG, Ming XIN, Ruowen TAO, Zhou ZHOU, Lijia PAN, Yi SHI. New flexible sensor for the internet of things [J]. Chinese Journal on Internet of Things, 2023, 7(2): 1-14. |
[2] | Guanglei GENG, Bo GAO, Ke XIONG, Pingyi FAN, Yang LU, Yuwei WANG. A survey of federated learning for 6G networks [J]. Chinese Journal on Internet of Things, 2023, 7(2): 50-66. |
[3] | Bin SHEN, Yinbo LI, Xiaowei LIANG. Spectrum access control for cognitive internet of things users based on enhanced weighted centroid localization [J]. Chinese Journal on Internet of Things, 2023, 7(1): 93-108. |
[4] | Jun SUN, Shangweikang ZHAO. Energy-saving computation offloading scheme based on Sarsa algorithm in industrial internet of things [J]. Chinese Journal on Internet of Things, 2022, 6(3): 82-90. |
[5] | Jingyuan LIANG, Mengru LI, Jiafan WANG, Xizheng KE. Research progress of error correction coding in optical wireless communication system [J]. Chinese Journal on Internet of Things, 2022, 6(3): 23-36. |
[6] | Nuo HUANG, Weijie LIU, Chen GONG. Industrial IoT oriented petahertz communication [J]. Chinese Journal on Internet of Things, 2022, 6(3): 37-46. |
[7] | Wei WANG, Renqian GU, Li3 PENG, Jijun ZHAO, Zhongcheng WEI, Cunxi CHANG. Robust optimization of air based relay for internet of things based on UAV [J]. Chinese Journal on Internet of Things, 2022, 6(1): 101-112. |
[8] | Mingjuan WU, Shuyi CHEN, Haitao LIU. Study of international standard ISO/IEC 30144: 2020 applied in intelligent substation auxiliary monitoring [J]. Chinese Journal on Internet of Things, 2022, 6(1): 123-132. |
[9] | Hao JIANG, Hongming CHEN, Yilong CAO, Haoyang CUI. Comparison of MIMO based on high capacity LPWAN technology TurMassTM and LoRa [J]. Chinese Journal on Internet of Things, 2021, 5(4): 54-61. |
[10] | Zhongcheng WEI, Xinqiu ZHANG, Bin LIAN, Wei WANG, Jijun ZHAO. A survey on Wi-Fi signal based identification technology [J]. Chinese Journal on Internet of Things, 2021, 5(4): 107-119. |
[11] | Yinghai XIE, Yu ZHANG. Electricity meter area identification technology based on channel coding theory [J]. Chinese Journal on Internet of Things, 2021, 5(4): 137-144. |
[12] | Yiyang HU, Lina QI. Channel estimation method of massive MIMO-OFDM system based on adaptive compressed sensing [J]. Chinese Journal on Internet of Things, 2021, 5(3): 78-85. |
[13] | Wei WANG, Yajing LIANG, Li PENG, Zhongcheng WEI, Jijun ZHAO. Node clustered deployment of emergency Internet of things based on UAV with equipment access restriction [J]. Chinese Journal on Internet of Things, 2021, 5(3): 97-105. |
[14] | Ling TAN, Shanshan RONG, Jingming XIA, Sarker SAJIB, Wenjie MA. Real-time diagnosis of multi-category skin diseases based on IR-VGG [J]. Chinese Journal on Internet of Things, 2021, 5(3): 115-125. |
[15] | Siqi SUN. Analysis and prospects of the development of the industrial Internet in the petrochemical industry [J]. Chinese Journal on Internet of Things, 2021, 5(3): 126-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|